

Early praise for Practical Microservices

Practical Microservices is, indeed, practical. It’s also the clearest and most complete
example of how and why to build an event-driven architecture that presents a
unified example that isn’t overly simplistic or overly complex. This would’ve
changed my approach to microservices if it had been available five years ago.

➤ David Bryant Copeland
Co-author of Agile Web Development with Rails 6

This book sets straight the microservices phenomenon—decoupled evented mi-
croservices style is the only way to achieve antifragility and maintain simplicity
at the same time.

➤ Adrian Bilauca
Director, R&D, TotalSoft S.A.

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Practical Microservices
Build Event-Driven Architectures

with Event Sourcing and CQRS

Ethan Garofolo

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-645-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Julie, Sofia, Eva, and Angelo—

you are life and joy

Contents

Acknowledgments xiii
Introduction xv

Part I — Fundamentals

1. You Have a New Project 3
Kicking Off Video Tutorials 3
Building the Bones 4
Mounting Middleware 6
Injecting Dependencies 7
Taking the Server for a Spin and Starting the Database 10
Serving the Home Page 11
Connecting the Home Page Application 15
Mounting the Home Application into Express 17
Building the Record Views Application 17
Recording State Changes 20
Charting a New Course 21
What You’ve Done So Far 24

2. Writing Messages 25
Unmasking the Monolith 25
Trying to Compress Water 27
Extracting “Microservices” 28
Defining Services 29
Getting Components to Do Things 30
Representing Messages in Code 31
Naming Messages 32
Storing State as Events 33
Storing Messages in Streams 33

Defining Component Boundaries 35
Recording Video Views 35
Writing Your First Message 36
(Re)configuring the Record-Viewings Application 38
Hanging a Lantern 39
What You’ve Done So Far 39

3. Putting Data in a Message Store 41
Defining Requirements 41
Fleshing Out Message Structure 42
Surveying Message DB 43
Scaffolding the Message Store Code 43
Connecting to Message DB 44
Writing write 45
Adding Optimistic Concurrency Control to Our Writes 47
“Can’t Kafka Do All of This?” 49
What You’ve Done So Far 49

4. Projecting Data into Useful Shapes 51
Handling Events 52
(Re)Introducing the RDBMS 53
Writing Your First Aggregator 53
Handling Asynchronous Messages 54
Getting Idempotent with It 57
Connecting to the Live Message Flow 58
Configuring the Aggregator 60
Having the Home Page Application Use the New View Data 61
Coming to Terms with Data Duplication 62
What You’ve Done So Far 62

5. Subscribing to the Message Store 65
Sketching the Subscription Process 65
Managing the Current Read Position 68
Fetching and Processing Batches of Messages 69
Orchestrating the Subscription 71
Reading the Last Message in a Stream 74
Reading a Stream’s Messages 75
Adding the Read Functions to the Message Store’s Interface 77
Starting the Server 78
What You’ve Done So Far 78

Contents • viii

Part II — Fleshing Out the System

6. Registering Users 83
Discovering Domain Messages 84
Starting with the Business Process 85
Translating the Business Processes into Events
and Commands 85
Fleshing Out the Identity Messages 87
Examples from Other Domains 88
Adding Registration to Our System 89
Turning Registration Requests into Commands 91
Superficially Validating User Input 92
Ensuring Uniqueness of Email Addresses 95
Finishing the Application 96
Validating Eventually Consistent Data 99
Coping with Trade-Offs 102
What You’ve Done So Far 103

7. Implementing Your First Component 105
Fetching a Stream’s Current State 106
Joining the “I Wrote a Microservice” Club 110
Wiring the Identity Component into the System 115
Disambiguating “Projections” and “Replaying” 115
Taking It Further 117
What You’ve Done So Far 117

8. Authenticating Users 119
Aggregating Registered Events 120
Discovering the Authentication Events and Commands 122
Letting Users in the Door 123
Using Third-Party Authentication 131
What You’ve Done So Far 132

9. Adding an Email Component 133
Discovering the Email Component Messages 134
Addressing Idempotence 135
Adding the Component 136
Sending the Email 139
Running the Component 144
Adding Email to the Registration Process 145

Contents • ix

Recording Registration Emails 149
Making the Message Store Aware of Origin Streams 151
Revisiting Idempotence 153
Orchestrating Components vs. Choreographing Components 154
What You’ve Done So Far 154

10. Performing Background Jobs with Microservices . . . 157
Accidental Complexity 158
Use Case #1: Sending Emails 159
Use Case #2: Transcoding Videos 159
Describing the Creators Portal 162
Aggregating Is Also for Other Teams 163
Building the Video Publishing Component 163
Accepting Potential Duplication 170
What You’ve Done So Far 171

11. Building Async-Aware User Interfaces 173
Defining Video Metadata Messages 174
Responding to Users When the Response Isn’t
Immediately Available 176
Adding Validation to a Component 181
Aggregating Naming Results 186
Applying Naming Events to the Creators Portal View Data 189
Justifying Our UI Decision 190
What You’ve Done So Far 191

Part III — Tools of the Trade

12. Deploying Components 195
Creating the Heroku “App” 196
Configuring the “App” 197
Installing Message DB 199
Deploying the System 200
Distributing the System 201
Deploying Databases 204
What You’ve Done So Far 204

13. Debugging Components 207
Priming the Database with Example Data 207
Introducing the Admin Portal 208
Creating Users 209

Contents • x

Wiring the Users View into the Admin Portal 214
Hooking the Admin Portal into the Rest of the System 218
Inspecting the Results So Far 219
Thinking Through the Expected Flow 220
Correlators Gonna…Correlate? 221
Imagining Our Way to Good System Monitoring 223
Starting from the Beginning 223
Viewing Messages by Stream 224
Augmenting the Message Store for $any and $all 228
What You’ve Done So Far 229

14. Testing in a Microservices Architecture 231
Revisiting the Fundamentals 232
Writing Tests for Autonomous Components 233
Writing Tests for Message-Writing Applications 236
Keeping It Simple 237
Dropping Testing? 238
What You’ve Done So Far 239

15. Continuing the Journey 241
Handling Concurrency 242
Snapshotting 245
Changing the Message Contract 247
Using Different Programming Languages 247
Making Use of Monoliths 247
What You’ve Done So Far 248

A1. ES6 Syntax 249
const and let 249
Arrow Functions 250
Object Destructuring 251
Object Literal Property Value Shorthand 253

Index 255

Contents • xi

Acknowledgments
I may have pushed a lot of buttons on keyboards to write this book, but I owe
its fruition to the efforts of so many others. A whole lot of thank yous are in
order.

To my Heavenly Father for life, my savior Jesus Christ for hope, and the Holy
Ghost for peace. Thank You for rescuing a soul so rebellious and proud as
mine, and may I live a life that extends to all others the love and grace You’ve
extended to me.

To Mom and Dad, thank you for all the lessons you’ve taught me. To my
brother Denis, I couldn’t imagine how a brother could have done a better job
than you did.

To my friends and coworkers who have had to endure me talking about this
for 2+ years. We can finally have a meeting where I don’t bring up my book.

To Adrian Bilauca, Damien Del Russo, Dave Copeland, Ben Marx, and Adam
Jasiura for being technical reviewers of this book. You gave of your time and
expertise with no expectation of reward. When I compare the early drafts to
what your feedback guided me to, well, that’s why books go out to reviewers.
You delivered, and I and all the readers are in your debt.

To Jesse Riggins, for being a technical reviewer, a friend, and a fellow learner
of microservices-based architectures through the years. It’s been wonderful
bouncing ideas off you, and goodness, I hope we get to work together again!

To Scott Bellware and Nathan Ladd, I have met few people as knowledgeable
and as generous as you both. Thank you for the work you do in the Eventide
community and in our profession. Scott, it was pure serendipity that led me
to a TDD talk of yours at the LoneStarRuby Conference, a talk that perma-
nently altered how I approach software development. Nathan, I’ve never had
the pleasure of meeting you in person, and I’m so glad you made it. I aspire
to become as good at my craft as you both are.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

To Todd Pickell, thank you for taking that phone call that one day and telling
me to go speak at meetups. You probably had other things to do, and I truly
appreciate that gift of your time.

To Brian MacDonald, thank you for coming to OpenWest in 2017, staying to
talk to me after that session, and encouraging me to write a pitch. I had no
idea what an amazing and life-changing ride this would become.

To my editor, Adaobi Obi Tulton, the highest thanks are in order. I don’t have
the hubris to claim that I’ve been the most difficult author you’ve ever worked
with, but I’m certain you’ve had easier projects. You are excellent at what you
do, and if this book provides value to its readers, I don’t think it would have
without your excellent guidance. Thank you for talking me down from the
ledge of discouragement, and thank you for saving this text from my attempts
to be clever. Readers, if any of you ends up writing your own book for PragProg,
ask for Adaobi!

To my dear children, Sofia, Eva, and Angelo, this book has cost a lot of
memories of playing together that we might have otherwise had. Thank you
for bearing with me and even being excited about this project. It’s finally done!
You are three of the most wonderful human beings I have ever met. It is an
honor to know you and a blessing beyond words to get to be your father. Your
imaginations and sense of wonder remind me constantly of how great a gift
each day is. I love you, and I couldn’t be prouder of you. Now let’s go play!

To my love and companion, Julie. In alphabetical order you are beauty, charm,
compassion, devotion, grace, inspiration, intelligence, and wit. I still remember
the day you tripped me on my way out of class and how I toilet papered your
desk in response—a greater love story has never been told. It is a privilege to
be married to you. Thank you for putting up with me all these years, and
thank you so much for the many nights and weekends of flying solo so that
I could write. This book is as much a result of your effort as it is of mine, if
not more. Je t’aimais, je t’aime, et je t’aimerai.

Finally, to you, the reader. I hope that you’ve learned a thing or two and that
this book helps you in your endeavors. Thank you for reading.

Acknowledgments • xiv

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Introduction
Here’s the deal, y’all—software is easy to write, but it’s hard to change.

If you’re reading this book, then chances are you can write code. Maybe you’re
a software developer, a technical lead, an architect, or a CTO. You’ve shipped
web-based applications that have provided a lot of business value to the
people who paid you to do that. You’re good at what you do, but something
keeps happening with your projects, where productivity slows down despite
spending more money and hiring more people. You want to learn how to fix
that, and maybe you’ve heard about microservices and are wondering how
to build them.

Telling a Tale of a Different Kind of Keyboard
So let’s digress into a story about something that at once is what many adults
wish to have spent more time practicing and what children often dread: the
piano. I never really learned the piano, but I did learn one song well enough
that I was asked to play it in a church group. The song is called “A Poor
Wayfaring Man of Grief,” and really liking it, I figured I needed to know how
to play it. I can look at a staff and figure out what the notes are, but I can’t
do that fast enough to read the music and press the corresponding keys in
real time.

So I set about memorizing the song. One. Beat. At. A. Time.

I put my fingers for both hands in place for the first beat and played it,
removed my fingers from the keys, and then without looking at the music put
them back and played that first set of notes. Then I read the second set and
basically played a game of Simon1 until I had memorized the song.

And I did. I could reproduce the notes. But woe was me when I made mistakes
halfway through the song! It was a bit like typing a password. When you goof
on entering a password, you generally have to start over.

1. https://en.wikipedia.org/wiki/Simon_(game)

report erratum • discuss

https://en.wikipedia.org/wiki/Simon_(game)
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

One day a friend of mine offered to teach me piano properly. We sat down,
and she observed my playing. She was gracious in how she let me know, “If
you’re ever going to play this instrument, you’re going to have to unlearn a
lot of things.”

There’s a technique to piano. For example, if you’re walking your left hand
up the keys, you’ll play notes from your pinky to your thumb. When it’s time
to go to higher notes, your middle finger slides over to the right of your thumb,
and it makes for an elegant trip up to the higher pitches. As an understate-
ment, I did not discover this technique when I was memorizing that song.
Folks who do learn good technique can work an amazing art.2 What these
other folks do is closed to me until I pay the price of unlearning.

Learning microservices-based architecture was and continues to be a similar
process of unlearning. You’re likely skilled in Model-View-Controller (MVC)
frameworks that model systems in terms of Create-Read-Update-Delete (CRUD)
operations. Maybe you’ve used frameworks like Ruby on Rails or Django.

But you keep running into a productivity wall. It becomes extremely difficult
to add features and fix bugs. You’ve changed frameworks and you’ve changed
languages. Is every project fated to hit this point where every enhancement
is excruciating?

The answer to that question is a resounding “NO!”

What This Book Is
This is a hands-on tutorial. In this book, you’re going to build a system
according to a different set of principles—ones that will allow you to build
systems where your productivity will not come to an encumbered halt. You’re
going to build microservices, focused units of autonomous functionality.

Chapter 1, You Have a New Project, on page 3 introduces the project you’re
going to build, and we’ll take a crack at it using the traditional CRUD-based
approach, seeing how it paints us into a corner. Following that, in Chapter
2, Writing Messages, on page 25 we’ll unmask the monolith, and you’ll see
why most writing on microservices misses the point. We’ll conclude this part
of the book by writing code to interact with a piece of technology called a
message store—a database optimized for storing asynchronous messages.
These messages will form the basis of your architecture.

2. https://www.youtube.com/watch?v=9fAZIQ-vpdw

Introduction • xvi

report erratum • discuss

https://www.youtube.com/watch?v=9fAZIQ-vpdw
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

With the fundamentals in place, you’ll leverage this message store to add
features to your system by building microservices and other autonomous
components. You’ll send emails (Chapter 9, Adding an Email Component, on
page 133) and even transcode videos (Chapter 10, Performing Background
Jobs with Microservices, on page 157). Along the way, the architecture you
implement will allow you to slice and dice the same data in varied and inter-
esting ways.

Once the bulk of the system is in place, in Chapter 12, Deploying Components,
on page 195, you’ll deploy your microservices-based system into the wild. In
Chapter 13, Debugging Components, on page 207 you’ll learn how this message-
based architecture helps you keep a health system running. You’ll even get
exposure to how this architecture alters how you test your system in Chapter
14, Testing in a Microservices Architecture, on page 231.

What This Book Isn’t
This is a hands-on tutorial, not a reference book or The Definitive Guide™ to
microservices. There are topics we won’t cover in detail. In Chapter 15, Con-
tinuing the Journey, on page 241, the final chapter, we call out some of these
topics, and you’ll have pointers on how to continue your learning.

This isn’t a book about flashy technology. You’re going to use PostgreSQL,3

a world-class relational database, and that’s about as exciting as the tools
get. The excitement, instead, is in the principles.

Separating Principles from Implementations
This is the book that I wish had been written years ago when I first started
learning service-based architecture. Finding information on high-level princi-
ples is pretty easy, but there weren’t any hands-on tutorials. But by getting
so low-level in this book, my biggest fear is that you interpret this particular
implementation as microservices gospel. The details here serve only to show
what the principles might look like in practice.

Using This Book
The chapters in the book build on top of one another. In Chapter 1, you start
writing a project that we add to as we go throughout the book. I can’t imagine
a reading order other than “each chapter in order” that makes sense. Maybe
I’m lacking in imagination, but that’s my recommendation to you.

3. https://www.postgresql.org

report erratum • discuss

What This Book Isn’t • xvii

https://www.postgresql.org
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

As you’re reading through the code, I can’t stress highly enough the value of
creating your own project folder, creating each file, and typing its contents
yourself. Is that tedious? Possibly. But it’s tedium with a purpose. Reading
code is nice, but I want to get the concepts in this book into your brain, and
typing code will do so much more of that transfer than merely reading. In
addition, you should also be sure to complete the exercises in the chapters.

Using Node.js
For better or for worse, we use JavaScript and the Node.js runtime to imple-
ment our system. The principles we cover absolutely transcend programming
languages, but bringing them down to the mundane requires implementing
them in something. We use Node.js because it’s a fine language when you
stay away from its warts—which we do—and because most developers who
have written code to run on the web can at least grok JavaScript.

Strapping In
Well, then—let’s buckle our seat belts and get rolling. I’m glad you’re along
for the journey.

Introduction • xviii

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Part I

Fundamentals

You just got hired as part of a crack team to build
the web’s next-generation learning platform. We’re
going to tackle it in a way that you’re probably not
accustomed to—with autonomous microservices.
You’ve probably heard something about microser-
vices before, but what we do here is likely going to
feel very, ah, different.

So we’re going to start with the fundamentals. What
are the downsides to how we’ve always built
things, and why would we want to change? Having
answered that, we get into the basic pieces of what
makes a system microservices based.

CHAPTER 1

Two roads diverged in a wood, and I—
I took the one less traveled by

 ➤ Robert Frost

You Have a New Project
Congratulations! Today is your day. You’ve got a new project to get underway.
A site full of videos; users to please—a system that will make future changes
a breeze.

You’re going to build Video Tutorials, the next-gen internet learning sensation.
Content creators will publish videos, and the rest of the users will level up
from watching those videos.

Some features of this system, like user registration and authentication, will
seem familiar. Some features may be new, like transcoding videos. Through
it all, rest assured that you have a top-notch business team to work with.
They’ll be busy discovering the benefits that our users want, and your job is
to build a system that will support this platform for decades to come. Pieces
of that system will necessarily evolve, so supporting that long-term change
is going to be our main focus.

Kicking Off Video Tutorials
Let’s start by getting the husk of this project off the ground. Our business
team wants to support content creators by slicing and dicing video viewing
metrics in all sorts of ways—some which they haven’t even identified yet. The
first metric they care about is a global count of video views.

Since we don’t actually have any video content yet, we can just simulate video
views with a button click. We’re going to build enough server to serve a page
like the screenshot on page 4. There’s a button to click to simulate having
viewed a video. To get this working we need:

• A basic project structure
• An HTTP route to GET this page
• An HTTP route to receive POSTs from the award-winning button

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let the fun begin.

Building the Bones
As mentioned in the book’s introduction on page xviii, our code samples are
all in Node.js. It’s a fine platform for evented architectures, and probably more
importantly, if you’ve done web development, you can probably at least grok
what is going on when you read JavaScript. In the Application layer—the
layer of the system that users interact with—we use a library called Express1

to route requests to the functions that handle them. This isn’t a book specif-
ically about programming in Node.js, but in case you’re unfamiliar with
Express, it’s worth a little ink to introduce it.

Express is a “fast, unopinionated, minimalist web framework for Node.js,”
and we use it to map URLs to functions that handle them and to render HTML
in response. We certainly could use single-page apps, but we want to keep
the focus on microservices rather than JavaScript UI frameworks.

Our first job is to build a simple Express server, and an Express server is
made up of some configuration, some middleware, and some routes:

first-pass/src/app/express/index.js
const express = require('express')
const { join } = require('path')

const mountMiddleware = require('./mount-middleware')
const mountRoutes = require('./mount-routes')

function createExpressApp ({ config, env }) {❶

1. https://expressjs.com/

Chapter 1. You Have a New Project • 4

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/index.js
https://expressjs.com/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const app = express()❷

// Configure PUG
app.set('views', join(__dirname, '..'))❸
app.set('view engine', 'pug')

mountMiddleware(app, env)❹
mountRoutes(app, config)❺

return app
}

module.exports = createExpressApp

❶ A typical Node.js file defines a top-level function and exports it. createEx-
pressApp is that top-level function for this file, and we export it at the very
bottom. Its return value is a configured Express application.

To configure that Express application, this function receives some config-
uration. config has references to the rest of the pieces of our system, and
env has all the environment variables our program was started with. If
you’re just dying to dive into these exciting files, they’re at code/first-pass/src/
config.js and code/first-pass/src/env.js, respectively, and we’ll work through them
on page 7.

❷ This instantiates the Express application. Now we configure it.

❹ This is where we mount middleware into the Express application. Middle-
wares are functions that get run on an incoming HTTP request and have
the chance to do various setup and side effects before we get to the func-
tion that ultimately handles said request. As an example, we’ll use a middle-
ware to ensure users are authenticated on certain routes in Chapter 8,
Authenticating Users, on page 119.

❺ HTTP requests come into a server with a given URL, and you have to tell
an Express server what to do for a given URL. That’s what mounting the
routes is for. You give Express a URL pattern and function to call to
handle requests that go to that URL pattern. The file implementing this
function is at code/first-pass/src/app/express/mount-routes.js. We don’t have any
routes quite yet, since we’re just building the bones of the system right
now, but we’ll add our first route on page 11 when we go to load the home
page shown before on page 4.

That’s the main structure of an Express application, and we won’t have to
touch this file for the rest of the project. We will add middlewares as we con-
tinue though, so that’s where we turn next.

report erratum • discuss

Building the Bones • 5

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Mounting Middleware
Here is the start of our middleware:

first-pass/src/app/express/mount-middleware.js
const express = require('express')Line 1

const { join } = require('path')-

-

const attachLocals = require('./attach-locals')-

const lastResortErrorHandler = require('./last-resort-error-handler')5

const primeRequestContext = require('./prime-request-context')-

function mountMiddleware (app, env) {-

app.use(lastResortErrorHandler)-

app.use(primeRequestContext)-

app.use(attachLocals)10

app.use(-

express.static(join(__dirname, '..', 'public'), { maxAge: 86400000 }))-

}-

-

module.exports = mountMiddleware15

Middlewares in Express are functions that we run as part of the request/response
cycle and that for the most part aren’t meant to actually handle the request.
We require three of our own, starting at line 4. Then we define the dependency-
receiving function mountMiddleware that is also exported at the very end of the
file. It receives app, the Express application, and env, our environment variables.
We won’t use the environment variables until Chapter 8, Authenticating Users,
on page 119.

To actually mount a middleware, we call app.use, passing in the middleware
function in question. We mount the first middleware, lastResortErrorHandler, at
line 8. We follow this with primeRequestContext and attachLocals, ending the function
with Express’s built-in middleware. express.static serves static files. We use that
for the CSS and JavaScript files we serve for the browser UI.

Let’s write those custom middlewares we just included, starting with prime
RequestContext:

first-pass/src/app/express/prime-request-context.js
const uuid = require('uuid/v4')

function primeRequestContext (req, res, next) {
req.context = {

traceId: uuid()
}

next()
}

module.exports = primeRequestContext

Chapter 1. You Have a New Project • 6

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/mount-middleware.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/prime-request-context.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

This middleware’s job is to set up values that we’ll want on every request. For
now we use it to generate a traceId for each and every request. Even in Model-
View-Controller (MVC) apps that model state as Create-Read-Update-Delete
(CRUD) operations, having a traceId is a nice thing. We’ll attach it to log state-
ments so that we know which log statements belong together. We put these
values onto req.context to namespace them all to a single property on req. We
don’t want to pollute the req object that Express hands us with a multitude
of keys.

Next is attachLocals:

first-pass/src/app/express/attach-locals.js
function attachLocals (req, res, next) {

res.locals.context = req.context
next()

}

module.exports = attachLocals

We’re rendering all of our UI on the server. This middleware makes the context
we set up on the request available when rendering our UI.

Finally, there’s lastResortErrorHandler:

first-pass/src/app/express/last-resort-error-handler.js
function lastResortErrorHandler (err, req, res, next) {

const traceId = req.context ? req.context.traceId : 'none'
console.error(traceId, err)

res.status(500).send('error')
}

module.exports = lastResortErrorHandler

This is an error-handling middleware, identified by having four parameters
in its signature. When nothing else manages to catch an error during a
request, we at least catch it here and log it. We will be more sophisticated
than this in our error handling—this is just our last resort.

With the middleware in place, we can dive into config and env.

Injecting Dependencies
We use a technique called dependency injection2 in this system. Quickly
stated, you can sum up dependency injection as “passing functions the things
they need to do their job.” This is in contrast to “having functions reach into
the global namespace to get what they need to do their job.” Dependency

2. https://www.youtube.com/watch?v=Z6vf6zC2DYQ

report erratum • discuss

Injecting Dependencies • 7

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/attach-locals.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/last-resort-error-handler.js
https://www.youtube.com/watch?v=Z6vf6zC2DYQ
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

injection doesn’t have anything to do with microservices, but it is how the
code in this book is structured.

So, enter code/first-pass/src/config.js, and let’s set up its shell:

first-pass/src/config.js
function createConfig ({ env }) {

return {
env,

}
}

module.exports = createConfig

That sure doesn’t do much yet. We’ll flesh it out on page 15 once we’ve finished
with the home page application.

Next, let’s write the file that ingests the runtime environment variables we’ll use:

first-pass/src/env.js
module.exports = {

appName: requireFromEnv('APP_NAME'),
env: requireFromEnv('NODE_ENV'),
port: parseInt(requireFromEnv('PORT'), 10),
version: packageJson.version

}

This isn’t the entire file, so check out the rest of it when you can. requireFromEnv
is defined in the part that isn’t printed here, and it checks if the given envi-
ronment variable is present. If not, it exits the program and tells us why.
When critical settings aren’t present, we want to know about that ASAP.

What we’ve done here is locate every place where we read from the runtime
environment in this one file. We don’t have to wonder where we get environ-
ment settings from, and things that depend on environment settings don’t
realize that they do. This also isn’t microservices-specific and is just the
convention we use in this project.

We start with a few values. appName is a cosmetic name given to our running
system. env tells if we’re running in development, test, production, or whatever
other environment we care to run. port is the port our HTTP server will listen
on. version doesn’t strictly originate from the environment, as we pull it out of
the package.json file this project has (every Node.js project has a package.json).

Okay, with a barebones server built, let’s start this puppy:

first-pass/src/index.js
const createExpressApp = require('./app/express')❶
const createConfig = require('./config')
const env = require('./env')

Chapter 1. You Have a New Project • 8

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/config.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/env.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const config = createConfig({ env })❷
const app = createExpressApp({ config, env })

function start () {❸
app.listen(env.port, signalAppStart)

}

function signalAppStart () {
console.log(`${env.appName} started`)
console.table([['Port', env.port], ['Environment', env.env]])

}

module.exports = {
app,
config,
start

}

❶ Starting here we require the functions for building our Express app and
config, as well as pulling in the environment.

❷ Then we instantiate config and the Express app.

❸ Finally, we define the start function that will be called to start the system.
For now it calls the Express app’s start function, passing it the port we
want the HTTP server to listen on (env.port) and a callback function (signalApp-
Start). This latter gets called when the HTTP server is listening, and it logs
some of the settings from the environment. It’s nice to have confirmation
the server is running.

Lastly, we just need some code that calls this start function:

first-pass/src/bin/start-server.js
const { start } = require('../')

start()

It simply requires the file located at code/first-pass/src/index.js, the one we just wrote.
It pulls out the start function and calls it.

Earlier we mentioned that every Node.js project has a package.json file at its
root, and ours is no exception. A package.json file defines a key named "scripts",
which are commands you can run using the npm command-line tool. If you
have one called "start-dev-server", you can run it with npm run start-dev-server. Ours
does define a script named "start-dev-server":

{
"scripts": {

"start-dev-server": "nodemon src/bin/start-server.js --color",
}

}

report erratum • discuss

Injecting Dependencies • 9

http://media.pragprog.com/titles/egmicro/code/first-pass/src/bin/start-server.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

nodemon3 is a library that watches for changes to code files and then reruns
the command passed to it. We tell it to run the file at src/bin/start-server.js, so
every time that we make a change to the source code, it will restart the server
for us.

Taking the Server for a Spin and Starting the Database
If you look in the package.json file, you’ll also see that it defines dependencies and
devDependencies. The former are other packages of Node code that we rely on
in all situations, whereas the latter lists packages we use only in development.
Both are installed when you run npm install, so do that now.

At this point, you can actually run this server. To do so, you’ll need to have
your PostgreSQL database set up. If you’re comfortable doing that on your
own, then by all means do so.

However, you can also use Docker,4 which is what the rest of this book will
assume. To use Docker, you’ll need to install it, and we punt to the Docker
docs5 to explain how to do that for your platform. Then, in each code folder
there is a docker-compose.yaml, which contains the necessary Docker configuration
to run the databases for that folder. You can start the databases by running
docker-compose rm -sf && docker-compose up. Go ahead and do that now.

If you do use your own PostgreSQL installation, you’ll need to make the
DATABASE_URL value match your database’s setup in .env in the project’s root
directory.

Assuming that you have your database running, from the command line in
the project’s root folder, simply run npm run start-dev-server, and you should get
output similar to the following:

$ npm run start-dev-server

> microservices-book@1.0.0 start first-pass
> nodemon src/bin/start-server.js --color

[nodemon] 1.17.5
[nodemon] to restart at any time, enter `rs`
[nodemon] watching: *.*
[nodemon] starting `node src/bin/start-server.js --color`
Video Tutorials started

3. https://nodemon.io/
4. https://www.docker.com/
5. https://docs.docker.com/v17.09/engine/installation/

Chapter 1. You Have a New Project • 10

report erratum • discuss

https://nodemon.io/
https://www.docker.com/
https://docs.docker.com/v17.09/engine/installation/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

┌─────────┬───────────────┬───────────────┐
│ (index) │ 0 │ 1 │
├─────────┼───────────────┼───────────────┤
│ 0 │ 'Port' │ 3000 │
│ 1 │ 'Environment' │ 'development' │
└─────────┴───────────────┴───────────────┘

Congratulations! You have an Express server running. Sure, it responds to
exactly zero routes, but no one said you were done. Just that, you can start
the system, and that’s a milestone worth celebrating. Now we can get that
incredible home page delivered to our users.

Serving the Home Page
Let’s build your first application in this system—the home page application.
Adding an application is a three-step process:

1. Write the application on page 11.
2. Inject its dependencies and add it to config.js on page 15.
3. Mount the application in our Express instance on page 17.

So, for step 1, the question is, what is an application supposed to do? Appli-
cations will handle user input and display screens to the user. The first sure
sounds like HTTP handlers, given that this is a web-based system. For the
second, what do those screens need to contain? From our earlier requirements
on page 3 we know that we’re going to need to show view counts. Those
counts will have to come from somewhere, and let’s just say now that’s going
to come from a database. So, we’ll need to run some queries.

Let’s write the basic structure of an application:

first-pass/src/app/home/index.js
const camelCaseKeys = require('camelcase-keys')Line 1

const express = require('express')-

-

function createHandlers ({ queries }) {-

return {5

}-

}-

-

function createQueries ({ db }) {-

return {10

}-

}-

-

function createHome ({ db }) {-

const queries = createQueries({ db })15

const handlers = createHandlers({ queries })-

-

report erratum • discuss

Serving the Home Page • 11

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/home/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const router = express.Router()-

-

router.route('/').get(handlers.home)20

-

return { handlers, queries, router }-

}-

-

module.exports = createHome25

First of all, notice createHome at line 14. All of our system components, including
this application, will export a top-level, dependency-receiving function. config.js
uses these functions to configure the system components. This application
needs access to the database where it will read the video counts it’s going to
display, so it receives db, a Promise resolving to a connection to that database.

ES6 Object Shorthand Notation

If you’re not familiar with how JavaScript has changed over the
past few years, some of the syntax here may look funky. For
example, createHome, receives { db } as its arguments.

That function signature is saying that it expects to receive a plain
old JavaScript object with a db key. db will be introduced as a
variable in the createHome’s scope, and it will reference whatever
the passed object’s db referenced.

This might be a good time to visit Appendix 1, ES6 Syntax, on
page 249 for a quick primer if you’re not yet aware of the newer
JavaScript syntax.

createHome then uses this db reference to call createQueries, which builds the
database query functions it needs. The queries are then passed to createHandlers
which builds the HTTP handlers it needs. These handlers are connected to
an express.Router. For example, at line 20 it mounts handlers.home at this router’s
root path.

The function finally returns an object containing the handlers, queries, and router.
That object constitutes the instantiated application that will get attached to
the system config in config.js, and if you recall when we built the Express ap-
plication on page 4, the mountRoutes function there will mount what we build
here into the main Express application as shown in the figure on page 13.

Let’s finish building the home application so that we can see how the pieces
all connect. The first step is to build the HTTP handler a user hits when they
request the home page:

Chapter 1. You Have a New Project • 12

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

config.js
create
home

application

{ db }

{ handlers, queries, router }

express

{ homeApp }

first-pass/src/app/home/index.js
function createHandlers ({ queries }) {

function home (req, res, next) {
return queries
.loadHomePage()
.then(viewData =>

res.render('home/templates/home', viewData)
)
.catch(next)

}

return {
home

}
}

The job of an HTTP handler is to take an incoming request, extract the input
from it, pass the input to whatever does the actual work, and then render a
response. This handler’s job is to show a screen with the global video view
count and a button to simulate having watched a video.

Showing that page doesn’t require any query params or a POST body, so the
handler calls queries.loadHomePage to load the view count. That comes back in
the homePageData variable, which we pass to res.render along with the Pug6 tem-
plate we want to render. Pug is an HTML templating language similar to HAML
in Ruby, if you’ve ever used that. We’ll only use its most basic features, so
check out its documentation if you want to dive deeper.

6. https://pugjs.org/api/getting-started.html

report erratum • discuss

Serving the Home Page • 13

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/home/index.js
https://pugjs.org/api/getting-started.html
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

In any case, the template file is located at code/first-pass/src/app/home/templates/
home.pug. We won’t print it here—it just contains some basic markup to render
the page.

The catch at the end of the chain is so that if there’s an error, Express’s next
function handles it for us.

And that’s it for the handler. We need to write that query function now:

first-pass/src/app/home/index.js
function createQueries ({ db }) {

function loadHomePage () {
return db.then(client =>
client('videos')

.sum('view_count as videosWatched')

.then(rows => rows[0])
)

}

return {
loadHomePage

}
}

This application only has one query, namely loadHomePage. This function’s job
is to return all the data we need to render the home page. We use a library
called knex7 for our database interaction. It’s a query builder, and it provides
nice JavaScript functions for building queries rather than writing raw SQL.
There’s nothing wrong with raw SQL, and sometimes we’ll use it because we
can’t express a query with knex’s JavaScript functions.

In any case, to get the data we need, we call db.then to resolve the database
Promise and get the client connection. With that client, we run a simple query
against a table named videos. Among its other columns, videos has a view_count
column that tracks view counts for each video. We ask knex to sum all the
view_counts and to name the result videosWatched. When we get the rows, we
extract the first one.

You may be wondering where this mysterious videos table came from. In
addition to providing query builder functionality, knex also provides database
migrations.8 Database migrations are a way to capture the evolution of your
database schema in code. We’ll create all our database tables through
migrations, and let’s start with videos:

7. https://knexjs.org/
8. https://knexjs.org/#Migrations

Chapter 1. You Have a New Project • 14

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/home/index.js
https://knexjs.org/
https://knexjs.org/#Migrations
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

first-pass/migrations/20190426220729_create-videos.js
exports.up = knex =>

knex.schema.createTable('videos', table => {
table.increments()
table.string('owner_id')

table.string('name')
table.string('description')
table.string('transcoding_status')
table.integer('view_count').defaultsTo(0)

})

exports.down = knex => knex.schema.dropTable('videos')

A knex migration defines two functions, up and down. The up function is called
when you apply a migration to the current schema. Our current schema does
not have the videos table in it, so we call knex.schema.createTable, passing it the
name we want and a callback function.

This table probably makes you feel right at home. We’re going to have videos
in the system, so we make a table named videos. And it has on it everything
that it means to be a video. table.increments() adds the familiar auto-incrementing
id column. The name and description columns hold display information about
the videos, while transcoding_status will get used when we start transcoding
videos. view_count, of course, held the data that we were after.

And boom! You just wrote the first application in this project! The next step
is to connect this application to the running system.

Connecting the Home Page Application
Let’s head over to config.js and pull the home page application into the system:

first-pass/src/config.js
const createKnexClient = require('./knex-client')Line 1

const createHomeApp = require('./app/home')-

function createConfig ({ env }) {-

const db = createKnexClient({-

connectionString: env.databaseUrl5

})-

const homeApp = createHomeApp({ db })-

return {-

// ...-

db,10

homeApp,-

}-

}-

report erratum • discuss

Connecting the Home Page Application • 15

http://media.pragprog.com/titles/egmicro/code/first-pass/migrations/20190426220729_create-videos.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Lines 1 and 2 pull in the functions to create our database interaction code
and the home application you just wrote, respectively. Using the databaseUrl
from env, we instantiate our database interaction code at line 4. Since you
haven’t written that yet, you can imagine it to be simply the most amazing
database interaction code. Ever. Or think of it as a simple wrapper on top of
knex that we’ll flesh out two paragraphs from now.

Next, at line 7 we make an instance of the home application, and like you
saw on page 11, that needs a reference to the database. So we pass it db. And
then finally at line 11, we add it to the config’s return object.

Okay. The. Best. Database. Code. Ever:

first-pass/src/knex-client.js
const Bluebird = require('bluebird')Line 1

const knex = require('knex')-

-

function createKnexClient ({ connectionString, migrationsTableName }) {-

const client = knex(connectionString)5

-

const migrationOptions = {-

tableName: migrationsTableName || 'knex_migrations'-

}-

10

// Wrap in Bluebird.resolve to guarantee a Bluebird Promise down the chain-

return Bluebird.resolve(client.migrate.latest(migrationOptions))-

.then(() => client)-

}-

15

module.exports = createKnexClient-

Maybe “thin wrapper over knex” was the more accurate description. Again, this
file exports a dependency-receiving function—that’s createKnexClient at line 4. Its
job is to return a Promise that resolves to a functioning database connection.

Using Bluebird Promises

Node supports Promises natively, but the Bluebird library,9 adds
some nice extensions that we’re going to use. We’ll call those out
when we get to them.

Using the connectionString config passed to us, we instantiate a knex instance at
line 5. This is what we’ll return, but before we tell the rest of the system that
the database is ready to go, we need to make sure that the database has our
schema in it.

9. http://bluebirdjs.com/docs/getting-started.html

Chapter 1. You Have a New Project • 16

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/knex-client.js
http://bluebirdjs.com/docs/getting-started.html
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

On line 7 we construct some options to pass to knex’s migration functionality.
knex keeps track of which migrations it has run in a table, and we give callers
the option to specify the name of that table. This will be useful when we get
to Chapter 12, Deploying Components, on page 195. If the caller didn’t supply
a custom name, we’ll use the same default that knex uses.

Finally, at line 12 we run the migrations using the migrationOptions from before.
client.migrate.latest() invokes knex’s migration functionality and applies that
migration you wrote on page 15. We wrap this in Bluebird.resolve to guarantee
that the Promise going forward from this point is a Bluebird Promise rather
than the native implementation.

When the migrations are done, we just return client, which is our knex instance.
This is the value that the home application uses in the query functions you
wrote on page 14.

The final step is to mount the application into Express.

Mounting the Home Application into Express
Head back to the file where we mount all of the routes in Express:

first-pass/src/app/express/mount-routes.js
function mountRoutes (app, config) {

app.use('/', config.homeApp.router)
}

All we do is get the homeApp out of config and then mount its router at the very
root. That seems like a good place for a home page.

And that’s it! You’ve set up the home application, and if you start the serv-
er—npm run start-dev-server—you can navigate to http://localhost:3000 and just
imagine what it would be like watching all these videos that our content cre-
ators are going to upload. All the learning!

Building the Record Views Application

Okay, now that you’ve imagined the equivalent of earning a PhD, let’s get
about the business of collecting those view analytics. The button we’ll use to
simulate views is already on the screen, and if you inspect the Pug template
at code/first-pass/src/app/home/templates/home.pug, you’ll see that it submits to /record-
viewing/12345. The 12345 is a fake video ID, but the /record-viewing path is where
we’ll mount the application that records viewing videos.

report erratum • discuss

Mounting the Home Application into Express • 17

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/mount-routes.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let’s write that application:

first-pass/src/app/record-viewings/index.js
const express = require('express')Line 1

-

function createActions ({-

}) {-

return {5

}-

}-

-

function createHandlers ({ actions }) {-

return {10

}-

}-

-

function createRecordViewings ({-

}) {15

const actions = createActions({-

})-

const handlers = createHandlers({ actions })-

-

const router = express.Router()20

-

router.route('/:videoId').post(handlers.handleRecordViewing)-

-

return { actions, handlers, router }-

}25

-

module.exports = createRecordViewings-

Let’s dive right in at line 14 where we set up the dependency-receiving func-
tion. At this point, we’re not quite sure what those are going to be, so let’s
continue.

This application is going to have what we’ll call actions. Actions are the
actual business code. This is in contrast to HTTP handlers that translate
between HTTP and our actual business code. The actions will receive some
dependencies as well, but we have to discover what they are first, so let’s keep
going.

An application is going to handle HTTP routes, so at line 18 we have handlers.
They’ll use the actions, so we pass them in.

Next, we instantiate an express.Router and then mount a handler at /:videoId. This
endpoint receives requests to recording video viewings, so handleRecordViewing
is a good name for the endpoint’s handler. Let’s go ahead and write that
handler:

Chapter 1. You Have a New Project • 18

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/record-viewings/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

first-pass/src/app/record-viewings/index.js
function createHandlers ({ actions }) {

function handleRecordViewing (req, res) {
return actions
.recordViewing(req.context.traceId, req.params.videoId)
.then(() => res.redirect('/'))

}

return {
handleRecordViewing

}
}

There is going to be an action named recordViewing, and it’ll do the work of
recording the view. This handler’s job is to get out of the incoming request
everything we need to record the viewing. That’s two pieces of data, namely
the request’s traceId (we set up the generation of trace IDs back on page 6)
and the ID of the video that was viewed. That’s embedded in the request path,
and that’s why the route we mounted this handler at has the leading colon.
/:videoId told Express, “Hey, when someone calls us here, take whatever is at
this point in the URL and attach it to req.params.videoId.” When recording that
succeeds, we just redirect the viewer’s browser to the home page.

Before we write that action, let’s mount the application into Express:

first-pass/src/app/express/mount-routes.js
function mountRoutes (app, config) {

app.use('/', config.homeApp.router)
app.use('/record-viewing', config.recordViewingsApp.router)➤

}

Straightforward. Just call app.use, mounting it at /record-viewing off the applica-
tion’s root path. Now we connect it to the system config in config.js (and we’re
only printing here the parts added for this application):

first-pass/src/config.js
// ...Line 1

-

const createRecordViewingsApp = require('./app/record-viewings')-

-

function createConfig ({ env }) {5

-

// ...-

const recordViewingsApp = createRecordViewingsApp({ db })-

-

return {10

// ...-

recordViewingsApp-

}-

}-

report erratum • discuss

Building the Record Views Application • 19

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/record-viewings/index.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/mount-routes.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Basically, just require the application (line 3), instantiate it (line 8), and add
it to the return value (line 12).

Recording State Changes
Okay, we left the record viewings application on page 19 having written the
HTTP handlers. The one that we wrote called actions.recordViewing. Now we’re
going to write that action and record the viewing:

first-pass/src/app/record-viewings/index.js
function createActions ({

db
}) {

function recordViewing (traceId, videoId) {
}

return {
recordViewing

}
}

This puts a shell in for that function. Let’s discuss what this function needs
to do.

Its job is to alter system state to reflect that a video has been viewed. We’re
also doing this in the context of providing a global count of all videos watched.

We already have a database table that could hold this data—you wrote the
migration for it on page 15. You could simply update the view counts in this
action. That would give us the data we need for the global view count. If you’re
used to MVC CRUD, then this approach might feel very natural.

But, and you probably anticipated some complication with this, what if we
wanted to pay content creators based on these view counts? What if we later
discovered an error in how we were recording those views? If all we have is
current counts, we’ve lost the information we’d need to recalculate.

What if we wanted to see trends in viewing a video over time? This model has
already discarded the data we’d need to do that. We could make a new table,
say video_views, that stores a record for every time that a video is viewed,
something like:

id video_id timestamp

1 aa635954-c5d8-4302-bd4a-6e04e5b7f432 1414281600000

2 aafd028a-d209-4ba2-b6f5-85531216c72b 783302400000

Chapter 1. You Have a New Project • 20

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/record-viewings/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

We’re getting there, but now it’s kind of weird having view counts stored on
the videos table as well as in this hypothetical table. Furthermore, what if we
had shipped to production with only the videos table and then later decided
to add video_views? Simply put, we would have been hosed. Sure, we’d have
the table, but what data would be in it? We’d only be able to populate it with
data from that point moving forward.

If we had shipped to production with the video_views table, when the requirement
to see trends came along, we could have said, “Oh, we totally have all the
data we need, and from the beginning of the site.” I’d much rather say that
than, “Oops. We threw away all that data without considering if it would be
needed.”

But as much of an improvement as we have here, it’s still lacking. What if we
wanted to verify that a view was legitimate before recording it? That seems kind
of important if these view counts are the basis of sending actual money to content
creators. What if that verification took longer than what we’re willing to put into
a request/response cycle? What if we wanted to signal to other parts of the
system that they have work to do whenever a video is viewed? video-views would
sort of work for both, but in the case of the latter, it’s kind of a specialized, one-
off approach. Could we find a more general pattern?

Lastly, what if—and this is the “What if…?” motivating the entire book—we
wanted to keep the notion of capturing a view completely separate from any-
thing else that we might do with the fact that a video was viewed? Would it
reduce your mental load to only have to worry about one thing at a time?
What if you could evolve how you recorded views without worrying about how
that might break any downstream analysis of said views? Do you think you
might be able to deliver value faster if you didn’t have to carry in your working
memory every place in the system that videos are used? With the videos table
from before, you sort of have to. We’re one stinking model into this project,
and MVC CRUD has already coded us into a corner. Can’t we do better?

Charting a New Course
If you’ve built web apps before, chances are that you’re used an MVC CRUD
architecture that was something like this:

Database
Application

Server

report erratum • discuss

Charting a New Course • 21

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Requests came in from the web, and you had an application server fronting
a database to handle them. Using this architecture, we coded our way into a
corner before we had finished even a single feature. If showing a view count
on the home page were all this project was ever going to do, the MVC CRUD
architecture would be a sensible choice. But as Tom Hardy’s character Eames
in the Christopher Nolan film Inception said, “You mustn’t be afraid to dream
a little bigger.”

We’re going to do something different with this project. As you’ve likely gath-
ered from the title of this book, we’re going to build a microservices-based
system. Rather than model our data as rows in relational databases or docu-
ments in document databases, we’ll model our data by storing the state
transitions themselves. Rather than having different parts of the system
communicate implicitly by reading from our database, the different parts will
communicate through an explicit contract. These two changes will be the
basis of how we’ll build a system that will be fit to live for decades, even if
individual pieces are able to come and go.

As we go along, we’re following an architecture like the following:

Components

Aggregators

View
Data

Message
Store

App

App

App

Applications

View
Data

View
Data

Every system is going to have its unique pieces, but in general they fall into
one of five categories:

Chapter 1. You Have a New Project • 22

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Applications
We built a couple of these in this chapter. If you’ve done MVC CRUD, then
everything you built is properly understood as an Application. They have
the HTTP endpoints and are what our end users interact with. The operate
in a request/response mode, providing immediate responses to user input.

Components
Autonomous Components are doers of things. A Component encapsulates
a distinct business process. They operate in batch mode, processing
batches of messages as they become available.

Aggregators
Aggregators aggregate state transitions into View Data that Applications
use to render what end users see. As with Components, they also operate
in batch mode, processing batches of messages as they become available.

View Data
View Data are read-only models derived from state transitions. They are
not authoritative state, but are eventually consistent derivations from
authoritative state. As such, we don’t make decisions based on View Data,
hence why it’s called View Data. In this book we’ll use PostgreSQL tables
for our View Data, but truly, they could be anything from generated
static files to Elasticsearch10 to Neo4j.11

Message Store
At the center of it all is the Message Store. The state transitions we’re
using as authoritative state live here. It is at the same time a durable
state store as well as a transport mechanism. In this book, we’ll use mes-
sage-db,12 an offering from The Eventide Project.13

You’ll notice that this list didn’t include the word “Service.” ’Tis a troubled word
that carries a lot of baggage. Much like the secret ingredient discussed in the
“Fry and the Slurm Factory” episode of Futurama, the word “Service” has
unfortunately come to represent whatever your imagination wants it to mean.
“Service” can refer to anything running on a computer, and in most writing
on the internet, what it precisely refers to has become quite clouded. Following
the language of the Eventide Project,14 we’ll choose instead the word “Compo-
nent” to highlight that we’re dealing autonomous units of functionality that

10. https://www.elastic.co/
11. https://neo4j.com/
12. https://github.com/message-db/message-db
13. https://eventide-project.org/
14. http://docs.eventide-project.org/core-concepts/services/components.html

report erratum • discuss

Charting a New Course • 23

https://www.elastic.co/
https://neo4j.com/
https://github.com/message-db/message-db
https://eventide-project.org/
http://docs.eventide-project.org/core-concepts/services/components.html
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

model a single business concern. There will be a few places where we still say
“service” because it reads better. For example, “microcomponent” doesn’t
work so well.

The arrows in the diagram indicate how data moves through the system. It
generally begins with end users sending requests to Applications. Applications
write messages to the Message Store in response to those requests. Services
pick up those messages, perform their work, and write new messages to the
Message Store. Aggregators observe all this activity and transform these
messages into View Data that Applications use to send responses to users.

This structure is going to feel bizarre at first. But chapter by chapter, as you
flesh out the pieces, you’ll see how a system made of autonomous components
enables you and your team’s long-term productivity. Hopefully, you’ll have
some fun along the way too.

What You’ve Done So Far
You put your web application development skills to use and laid the foundation
for Video Tutorials, the next-gen web learning sensation that is about to take
the world by storm. We’ll remove the videos table as we continue building in
upcoming chapters, but the rest of the structure is solid.

Speaking of videos table, here’s a fun exercise. In this book we’re going to allow
users to upload videos, have other users watch those videos, track those
viewings, comment on videos, and show screens to let users update video
metadata. Can you truly come up with a single representation of videos that
will work for all those cases? Will that single model scale? You’re free to start
with the videos table if you like, or you can start from scratch.

This chapter ends with a bit of a cliff hanger—how are we going to record
these video viewings in a way that doesn’t slowly strangle our productivity in
the long run? According to the system map on page 22 what we built in this
chapter was an Application, and Applications write messages to a Message
Store. So guess what you’re going to build next? That’s right, you’re going to
build a Message Store. The anticipation is likely driving you mad.

Chapter 1. You Have a New Project • 24

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 2

We are in bondage to the law in order that we may be free.

 ➤ Marcus Tullius Cicero

Writing Messages
When last we left our intrepid hero, the maw of the monolith was closing
around. As if in a bad version of Groundhog Day, teeth bearing the stench of
a thousand years were about to lay waste to an exciting greenfield project,
and another iteration of the horrific loop was about to begin.

But in that darkest moment, when hope itself had failed, yet one light still
shone. Our hero summoned the wisdom of software design principles,
unmasked the monster, and restored, let’s say, justice to the land.

That’s pretty much the tale people will tell of your efforts in building Video
Tutorials. Tongue less in cheek, in this chapter you are going to unmask the
monolith. It turns out “monolith” doesn’t just mean “code that’s hard to work
on.” A monolith does tend to be difficult, and you’re going to uncover why
that is so that you can prevent that great darkness from claiming yet another
project. Eternal glory awaits.

Unmasking the Monolith
Software is easy to write, but hard to change. MVC CRUD frameworks lead
you to monolithic architectures, which optimize for writing. Those quick
results they deliver come at the cost of adding a great deal of coupling into
your project.1 Coupling is the enemy of change. Coupling is what makes it
impossible to make a change in subsystem A without fear of breaking subsys-
tem B, C, and D. If you rename that column in your users table, well, hope-
fully you’ve cleared your calendar for the weekend.

That’s fine if you’re prototyping applications, but it’s a sandy foundation for
long-lived systems. Recall our system map (see the figure on page 26) from
the previous chapter.

1. https://en.wikipedia.org/wiki/Coupling_(computer_programming)

report erratum • discuss

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Components

Aggregators

View
Data

Message
Store

App

App

App

Applications

View
Data

View
Data

Applications are just one part of an overall system. There are also Components,
Aggregators, and View Data to build and maintain. If you don’t remember
what these different pieces are and what they do, refer back to our list on
page 22.

But what is the heart of a monolith’s coupling? What is it that makes some-
thing a monolith? Is it a question of language? Framework? Database?
Codebase size? Monorepo vs. polyrepo? How many servers the system is
running on?

Depending on where you land when searching in the blogosphere, those might
be posed as the essential questions. Or you might read that “microservices”
means “stuff running on different machines.” Or Docker. Surely, if you use
Docker, you’re dealing with microservices. Right? Right?

You landed here though, and you’re going to learn all throughout this book
that while those questions are important, none of them has any bearing as
to whether or not something is a monolith. You can build a service-based
system with Rails, and you can certainly build monoliths with Docker. A
monolith is a data model and not a deployment or code organization strategy.

Chapter 2. Writing Messages • 26

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Trying to Compress Water
Remember the videos table from the previous chapter?

id
owner_id

name
description
view_count

transcoding_status

It has a mere six columns: id, owner_id, name, description, transcoding_status, and
view_count. Do these pieces of data really all belong together? Do they represent
a single thing? Can you imagine a single operation that simultaneously requires
all six pieces of data? How many different concerns are represented here?

authorization

video player

transcoding

id
owner_id

name
description
view_count

transcoding_status

owner_id is useful if we’re trying to make sure that someone trying to do
something to this video is allowed to—authorization. But how does that help
us when putting the video in the video player that other users will see? It
would be nice to see the owner’s actual name there, but this table doesn’t

report erratum • discuss

Trying to Compress Water • 27

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

even have that information. Finally, transcoding_status has nothing to do with
either of those. Transcoding a video happens in the background, and if a
video isn’t ready for viewing, why would it show up at all for users who aren’t
the owner?

The thing represented by this table is an aggregation of many different con-
cerns. Which means that any changes to this table could potentially break
each of those concerns. This will happen every time you rely on a canonical
data model2—the one representation of a system entity to rule them all and
in the darkness bind them. You can try to force these data together, in the
same way that you can try to compress some measure of water. It can be
done, but only at the cost of considerable energy. That’s because they don’t
want to be together.

This data model is the monolith, and no change of language, framework, or
deployment strategy can fix that. Nor does the blogosphere’s general advice
in these situations.

Extracting “Microservices”
When you hit your productivity wall, the blogosphere is going to tell you to
Just Extract Microservices.™ Okay. Here’s our fledgling system with a hypo-
thetical users concern added to the mix:

database
users videos

Function calls

All of these pieces being in the green box represents that their running on
the same server. users and videos are run-of-the-mill MVC “models” that have
a table of the same name inside of the big, honkin’ database sitting in the
middle of it all. videos, of course, makes function calls to this users “model” to

2. https://www.innoq.com/en/blog/thoughts-on-a-canonical-data-model/

Chapter 2. Writing Messages • 28

report erratum • discuss

https://www.innoq.com/en/blog/thoughts-on-a-canonical-data-model/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

get data about users. Imagine this project scaling to all sorts of “models,” and
then we hit the all-too-common “we can’t work on this anymore, so we print
our resumes and go find another job.”

Or desperate to make it better we try to implement the blogosphere’s advice
and just extract the users and videos “microservices”:

users videos

HTTP Requests

More green boxes, more problems. We’ve paid a price here. Two servers. Two
databases. Those function calls from before? They’re HTTP calls now. It’s okay
to pay a price to receive value, but what value did we receive here?

Absolutely nothing.

The data model has not changed. And what’s worse, if this so-called “users” service
goes down, it’s bringing the so-called “videos” service down with it because
“videos” depends on “users.” “Videos” now has two reasons to fail. BOO!

What you have in that image is not microservices.

It is in every aspect still a monolith, only it is distributed now—a distributed
monolith. Every aspect of working on this system will be more difficult than
it was before. Your operational costs just went up (!). What you used to be
able to do with a JOIN in a database you have to re-implement in app code (!!).
You now need expensive tooling and orchestration to make this work even in
development (!!!).

Simply putting a database table behind an HTTP interface does not produce
a service, micro or otherwise. So what does?

Defining Services
The defining characteristic of microservices is autonomy. Nice word, but what
does it mean in this context?

report erratum • discuss

Defining Services • 29

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

First of all, let’s get back to calling them Components. Good. Now, Components
don’t respond to questions. We have things we ask questions of in software.
They’re called “databases,” and the process of asking them something is called
“querying.” Even if you stick a database behind HTTP, it’s still a database,
architecturally speaking.

Components don’t ask questions of anything else. If they did, they would
depend on that thing and would no longer be autonomous. If you have to
connect to something else to get data to make a decision, then you are not
autonomous.

You might be saying, “That’s all well and good, but that sounds like the
properties of both a black hole and a white hole—no information in, no
information out. Not only a paradox, but entirely useless in software.” There
is a way, and that way is through asynchronous messages.

Getting Components to Do Things
Asynchronous messages are what make service-based architectures possible.
We’ll just call messages from here on, but they come in two flavors: commands
and events.

Commands are requests to do something. Maybe that’s transferring some
funds, or maybe that’s sending an email. Whatever the desired operation is,
commands are merely requests. The Component that handles a given com-
mand chooses whether or not to carry it out.

Components produce events in response to commands. Events are records
of things that have happened. That means whatever they represent, it’s already
done. You don’t have to like it, but you do have to deal with it.

Commands and events, collectively messages, are moved around in the system
via publish-subscribe, or pub/sub for short.3 In pub/sub, publishers publish
data, and they’re not sure who subscribes to it. Subscribers similarly don’t
know who published the information they consume.

When you write a Component, as you will in Chapter 9, Adding an Email
Component, on page 133, you document which commands your Component
handles as well as which events your Component publishes. With those
messages defined, interested parties can request your Component do some-
thing and can also respond to the events your Component publishes.

3. https://en.wikipedia.org/wiki/Publish–subscribe_pattern

Chapter 2. Writing Messages • 30

report erratum • discuss

https://en.wikipedia.org/wiki/Publish�subscribe_pattern
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Representing Messages in Code
So what does a message look like? We can represent them as JSON objects:

{
"id": "875b04d0-081b-453e-925c-a25d25213a18",
"type": "PublishVideo",
"metadata": {

"traceId": "ddecf8e8-de5d-4989-9cf3-549c303ac939",
"userId": "bb6a04b0-cb74-4981-b73d-24b844ca334f"

},
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

This is a command you’ll define in Chapter 10, Performing Background Jobs
with Microservices, on page 157.

At the root of this object we have four fields:

id
Every message gets a unique ID, and we use UUIDs for them.

type
A string and something you choose when you define your messages. When
we said earlier that events represent things that have happened, it’s the
type that tells us what that thing that happened was. And in the case of
commands, the type tells us we want to have happen.

metadata
An object that contains, well, metadata. The contents of this object have
to do with the mechanics of making our messaging infrastructure work.
Examples of fields we’ll commonly find in here include traceId, which ties
messages resulting from the same user input together. Every incoming
user request will get a unique traceId, and any messages written as part
of that user request will get written with that request’s traceId. If there are
any components that write other messages in response to those messages,
then those messages will have the same traceId. In that way, we can easily
track everything that happened in the system in response to a particular
user request. We’ll put this into action in Chapter 13, Debugging Compo-
nents, on page 207, which deals with debugging strategies. We will also

report erratum • discuss

Representing Messages in Code • 31

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

commonly have a userId string, representing the ID of the user who caused
the message to be written.

data
A JSON object itself, and the “payload” of the event. The contents of a
message’s data field are analogous to the parameters in a function call.

You can tell that this event is a command because the type is in the imperative
mood. This is a convention we will always follow. Since a command is a request
to do something, its type is in the imperative mood. This is in contrast to the
event that might get generated in response to this command:

{
"id": "23d2076f-41bd-4cdb-875e-2b0812a27524",
"type": "VideoPublished",
"metadata": {

"traceId": "ddecf8e8-de5d-4989-9cf3-549c303ac939",
"userId": "bb6a04b0-cb74-4981-b73d-24b844ca334f"

},
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

Notice the type on this event is in the past tense. That’s because events are
things that have already happened.

Naming Messages
Giving types to our messages is the most important of the engineering work
we’ll do. As we add features to our system, we’ll use messages to represent
the various processes the system carries out. The preceding messages come
from the video cataloging process we’ll build in Chapter 10, Performing
Background Jobs with Microservices, on page 157.

We come up with types for the messages in collaboration with our company’s
business team. Message types are named after the business processes they
represent. Furthermore, we select types using language familiar to experts
in the domain we are modeling. This is not something we can do alone as
developers.

If we were modeling banking, we might have messages like TransferFunds,
AccountOpened, and FundsDeposited. We absolutely will not have types that contain
“create,” “update,” or “delete.” We’re purging that CRUD from our vocabulary.

Chapter 2. Writing Messages • 32

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Storing State as Events
Up to this point, this concept of commands and events may be familiar. You
may have already used technology such as Apache Kafka4 to have components
communicate via events. We’re going to take it further though.

You may receive a command like PetPuppies, a command that should never be
rejected. When a command is processed, the output is one or more events,
such as PuppiesPet. If we wanted to know whether or not the puppies have been
pet, how could we tell? Take a moment and think about it…

All we’d have to look for is that event. Instead of treating the messages as
transient notifications, discarding them when we’re done, we save them. Then
we can constitute and reconstitute current state or state at any point in time
to our heart’s content. This is event sourcing—sourcing state from events.

If you’ve done MVC CRUD apps, then you’re probably used to receiving
incoming requests and then updating one or more rows in a database. At any
given point, you were storing the current state of your system, having discarded
all knowledge of how the system got into that state. Because we’re already
going to use messages to communicate between portions of our system, why
not keep them around? Then we could use the events to know what the state
of our system is now, and at any point in the past.

Storing Messages in Streams
One last note about messages before we begin writing them. When we start
writing messages on page 36, we’ll organize them into what we call streams.
Streams group messages together logically, usually representing an entity or
process in your system. Within a stream, messages are stored in the order
they were written.

For example, Video Tutorials users will have an identity. We’ll explicitly
model that identity in Chapter 6, Registering Users, on page 83. All the events
related to a particular user’s identity will be in the same stream, and those
are the only events that will be in that stream. Using the naming conventions
of the Eventide Project,5 a Ruby toolkit for building autonomous microservices,
we call this type of stream an entity stream. We use UUIDs6 as identifiers in
our system, specifically version 4 UUIDs, and so a natural name for one of
these user identity streams would be identity-81cb4647-1296-4f3b-8039-0eedae41c97e.

4. https://kafka.apache.org/
5. http://docs.eventide-project.org/core-concepts/streams/stream-names.html
6. https://en.wikipedia.org/wiki/Universally_unique_identifier

report erratum • discuss

Storing State as Events • 33

https://kafka.apache.org/
http://docs.eventide-project.org/core-concepts/streams/stream-names.html
https://en.wikipedia.org/wiki/Universally_unique_identifier
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

While any part of the system is free to read the events in such a stream, a
property we’ll use in Chapter 8, Authenticating Users, on page 119, an entity
stream only has a single writer.

Here is a pair of such identity streams:

There are other kinds of streams, though. If all goes as planned, Video Tuto-
rials will have more than one user, each with a stream of the form identity-UUID.
Every event in such an entity stream is also part of the identity category stream.
To get the category stream that an entity stream belongs to, just take every-
thing to the left of the first dash. So for identity-81cb4647-1296-4f3b-8039-0eedae41c97e,
identity is the category. The identity category stream contains every event written
to every identity in our system.

We talked about commands on page 30, and commands are also written to
streams. They aren’t written to entity streams, though—they are written to
command streams. In the case of this identity Component, we’ll write to streams
of the form identity:command-81cb4647-1296-4f3b-8039-0eedae41c97e. This is an entity
command stream, and it only contains commands related to a particular
entity. What is the category of this stream? Is it the same as the entity stream
from before? Again, to get a category from a stream, take everything to the
left of the first dash. For this entity command stream, that gives us identity:com-
mand, which is not the same as identity. So no, entity streams are not in the
same category as entity command streams.

Streams, like messages, don’t get deleted. Messages are added to them in an
append-only manner.

Now, if there’s anything we can take from the 1984 Ghostbusters film, crossing
the streams is Bad™ and continued abstract talk about streams will likely
lead to that. Now that we have the basics of messages, let’s get to a concrete
example and resolve the cliffhanger we started on page 20.

Chapter 2. Writing Messages • 34

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Defining Component Boundaries
Stream boundaries are Component boundaries. If we have a stream category
such as identity, what we’re saying is that there’s going to be a single Compo-
nent authorized to write to streams in the identity category. Those are Compo-
nent boundaries. Similarly, if we have command streams in the category
identity:command, only that same Component is authorized to handle those
commands. These strict rules are part of avoiding monoliths. In a monolith,
anyone can add columns to the users table and make updates to its rows. Not
so in our architecture! The lack of these boundaries are why we can’t just
Extract Microservices™ from a monolith. As you’ll see when we look at dis-
tributing our system in Chapter 12, Deploying Components, on page 195, it’s
precisely these boundaries that allow us to extract things.

Sometimes, although not in this book, a Component will own more than one
entity. This is rare, and it also doesn’t break our rule in the previous para-
graph. A category has a single owner, even on the rare occasions that a par-
ticular owner happens to own another category.

Recording Video Views
How are we going to record that a video was viewed? Since we’re not going to
just use an MVC CRUD-style database table, it stands to reason that we’re
going to write a message. Should that be an event or a command?

Questions are best answered by going back to fundamental principles. In our
initial talks with the business team, one of the longer-term (read: outside the
scope of this book) visions is to have users buy memberships to see premium
content, and the creators of that content would get paid based on how many
times their videos were viewed. So we know an event eventually needs to be
written, and since we’re recording that a video was viewed, VideoViewed seems
like a good type for this kind of event.

The next question then, who writes that event? Should the record-viewings
application write events directly, or should it write commands that some
Component picks up and handles? We previously discussed on page 33 how
a given event stream is populated by one and only one writer. So far, it could
go either way.

Let’s say that we have the application write the events and that it writes to
streams of the form viewingX, where X is a video’s ID. Are we capturing the
necessary state? Check. Is there only a single writer to a given stream? Check.
So far so good.

report erratum • discuss

Defining Component Boundaries • 35

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

What if we wanted to run potential video views through some sort of algorithm
to detect fake views before committing them to system state? Obviously none
of our users would ever do that, but, you hear stories. Investors like to know
we’ve addressed this kind of thing, and content creators would want to know
the view counts are legit.

That seems like a bit much to put into a request/response cycle and something
that we would want to put into a Component. That Component would currently
do nothing besides receiving, say RecordVideoViewing commands, and writing
VideoViewed events. We don’t need to support this right now, so why take on
that extra burden?

The only reason to do so would be if this choice affects long-term maintain-
ability. Does it? If we had the application write the viewed events and later
decided to move this into a Component, what would we need to change?

1. Refactor the Application to write a command to a command stream rather
than an event to an event stream.

2. Write the Component.

We’d have to do step 2 anyway, and step 1 doesn’t sound that hard. If we
were doing this CRUD style, we might have had to set up a different API to
call into with the video view. We’d have the same issue where verifying the
view takes too long to put into a request/response cycle, so that API would
likely have done some sort of background job. When it’s done with the verifi-
cation, maybe it would make another call into our application to record the
result of that verification? Or we modify our application to pull from a different
database? Or we directly couple our application to that API via a shared
database table? Those all sound like messes from a design perspective, let
alone the operational concerns of having to make two network hops. With a
pub/sub flow that stores state as events and makes sure a given event stream
only has a single writer, we’re able to proceed confidently in the short term
without setting ourselves up with a costly refactoring later.

Let’s not worry about the Component right now and just have the Application
record video viewings. We’ll get to our first Component soon enough in
Chapter 6, Registering Users, on page 83.

Writing Your First Message
Okay, when we left the record-viewings application, we were in the function that
would record that a video was viewed. Here’s where we left off:

Chapter 2. Writing Messages • 36

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

first-pass/src/app/record-viewings/index.js
function createActions ({

db
}) {

function recordViewing (traceId, videoId) {
}

return {
recordViewing

}
}

We decided on page 35 that we’ll use VideoViewed events to record video views.
We’ll write these events to streams of the form viewing-X, where X is the video’s
ID. So all we need to do in this function is build the event we’re going to write
and then write it to the Message Store:

The Code Directory Has Changed

From this point going forward in the book, the code is in the
code/video-tutorials/ folder.

If you’re using Docker for the database, be sure to stop the con-
tainer for the first-pass folder and switch to code/video-tutorials and re-
run docker-compose rm -sf && docker-compose up.

video-tutorials/src/app/record-viewings/index.js
function createActions ({

messageStore❶
}) {

function recordViewing (traceId, videoId, userId) {
const viewedEvent = {❷
id: uuid(),
type: 'VideoViewed',
metadata: {

traceId,
userId

},
data: {

userId,
videoId

}
}
const streamName = `viewing-${videoId}`❸

return messageStore.write(streamName, viewedEvent)❹
}
return {

recordViewing
}

}

report erratum • discuss

Writing Your First Message • 37

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/record-viewings/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/record-viewings/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❶ First of all, notice that we’ve taken out the reference to the db and replaced
it with a messageStore reference. We’re writing an event and not updating
a row in a videos table.

❷ Then we construct the event. It’s just a plain old JavaScript object that
can be serialized to JSON. You’ll notice the fields we mentioned on page
31. There isn’t that much to an event.

❶ Next, we construct the name of the stream that we’re going to write this
event to.

❹ Finally, we actually call messageStore.write to write the event. That function
takes the streamName that we want to write to and the message we want to
write.

There’s one last change we need to make in this file. In the top-level function
we also need to change the db reference to messageStore:

video-tutorials/src/app/record-viewings/index.js
function createRecordViewings ({

messageStore
}) {

const actions = createActions({
messageStore

})
// ... rest of the body omitted

}

The top-level function receives messageStore and passes it along to actions.

(Re)configuring the Record-Viewings Application
And we also have a change to our configuration to make. We need to pull in
the Message Store, instantiate it, and pass it to the record-viewings application:

video-tutorials/src/config.js
// ...Line 1

const createPostgresClient = require('./postgres-client')-

const createMessageStore = require('./message-store')-

function createConfig ({ env }) {-

const knexClient = createKnexClient({5

connectionString: env.databaseUrl-

})-

const postgresClient = createPostgresClient({-

connectionString: env.messageStoreConnectionString-

})10

const messageStore = createMessageStore({ db: postgresClient })-

-

const homeApp = createHomeApp({ db: knexClient })-

const recordViewingsApp = createRecordViewingsApp({ messageStore })-

Chapter 2. Writing Messages • 38

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/record-viewings/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return {15

// ...-

messageStore,-

}-

}-

Line 2 requires the code that will create our database connection to the Message
Store, and line 3 requires our Message Store code. We set up the database
connection at line 8 by giving it the connection info we get from the environ-
ment. We’ll add that to env.js and .env is just a moment. Line 11 then instanti-
ates the Message Store by passing it the postgresClient reference. Line 14 passes
messageStore to instantiate the recordViewingsApp, and then we add messageStore to
the config function’s return value at line 17.

A quick change in src/env.js:

video-tutorials/src/env.js
module.exports = {

// ...
messageStoreConnectionString:

requireFromEnv('MESSAGE_STORE_CONNECTION_STRING')
}

And be sure to add the corresponding value to .env:

MESSAGE_STORE_CONNECTION_STRING=
postgres://postgres@localhost:5433/message_store

Make sure to put that on a single line. So, good to go, right?

Hanging a Lantern
In showbiz, when writers call attention to glaring inconsistencies, that’s called
“hanging a lantern on it.” We have one, ah, slight problem. We don’t actually
have the Message Store code yet. Let’s punt that to the next chapter because
this one is already pretty long, and we’ve covered a lot in it.

What You’ve Done So Far
You unmasked the monolith. You learned that monoliths are data models
and that they speed up the near term at the expense of the long term by
introducing high levels of coupling. You also learned that the most commonly
recommended methods for dealing with this coupling don’t actually do any-
thing to address the coupling.

Then you got your feet wet with the basics of message-based architecture.
Messages are what make autonomous microservices possible, and autonomouse

report erratum • discuss

Hanging a Lantern • 39

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/env.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

microservices are what make long-term productivity possible. This was no
small amount of learning.

Taking those principles then, you came back to our problem at hand—how
do we record video views without writing ourselves into an inescapable corner?
You learned about streams and concluded the chapter by writing a VideoViewed
event to a stream in the viewings category. You stepped into a whole new world.

Aside from building the mechanics of the Message Store, which we’ll start in
the next chapter, being able to analyze business processes and model them
as messages is the most important skill you can acquire. That’s where the
real engineering is done. To that end, choose some workflow that exists in
the project you’re currently working on. Instead of thinking of it in CRUD
terms, can you model it as a sequence of events? Strike create, update, and
delete from your vocabulary, and state what your current project does in
terms that non-developers would use. Does it get you thinking differently
about the project? Does it reveal holes in your understanding?

Lanterns are great and all, but we need something to store our messages. As
we continue the journey to record video views and display the total view count
on the home page, our next step is to go from mythical Message Store to
actual Message Store. You may find it mundane, or you may find it exciting.
Regardless of which, you’ll find it in the next chapter.

Chapter 2. Writing Messages • 40

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 3

Putting Data in a Message Store
Imagine a house without plumbing. Such a dwelling might be fun for the
occasional rustic experience, but there are several reasons why it wouldn’t
be desirable in the long term. A Message Store is kind of like the plumbing
in a microservices-based system, only in contrast to a house’s plumbing, we,
um, want to keep the stuff it moves around.

You’ve started Video Tutorials, and you learned the interface for writing data
to a Message Store. Now you’re going to connect to a real Message Store and
actually write that data. We’re going to use Message DB,1the PostgreSQL-
based Message Store implementation from the Eventide Project.2 By the end
of this chapter, you will have written the code we’ll use to leverage Message
DB’s write capabilities. This will give you a deeper understanding of the
pub/sub architecture we’re implementing and better equip you to design
microservices-based systems.

Defining Requirements
Simply put, a Message Store needs to provide two things with regard to writing
messages:

• Persist append-only streams of immutable messages
• Provide optimistic concurrency control3 on those streams

If you’re tired of developing software and are looking for an experience painful
enough to convince you to quit, you technically could use something as simple
as a flat text file with a little code sprinkled on top to model a Message Store.

1. https://github.com/message-db/message-db
2. https://eventide-project.org
3. https://en.wikipedia.org/wiki/Optimistic_concurrency_control

report erratum • discuss

https://github.com/message-db/message-db
https://eventide-project.org
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Now, as Jeff Goldblum’s character in Jurassic Park mused, just because one
could do a thing does not mean one should, but hey, the option is there.

We’ll choose a different path, though, and we’ll use a Message Store built on
top of a relational database, specifically PostgreSQL. RDBMSs are tried-and-
true, battle-hardened technology. You’ll write a sprinkle of code on top, and
we’ll close the chapter with the ability to write messages to the Message DB.

Fleshing Out Message Structure
In Chapter 2, Writing Messages, on page 25, we showed some example mes-
sages. That’s what they look like before being written to the Message Store.
The act of writing them adds some additional fields:

streamName
A string and the name of the stream this event belongs to. We discussed
the importance of streams and how they’re named on page 33.

position
This is used for optimistic locking, a method for dealing with concurrent
writes. It denotes a particular message’s position within its stream. The
Message Store will generate these values.

globalPosition
Just as position records a message’s position within its stream, globalPosition
records a message’s position within the entire Message Store. This field
enables real-time consumption of messages, which you’ll get to in Chapter
5, Subscribing to the Message Store, on page 65. The Message Store will
generate these values as well.

time
This captures when the message was written to the Message Store. This
is about the mechanics of messaging, and if your message needs to capture
a time for domain reasons, put that in the data field. For example, if you
were modeling credit card payments, you’d want to model when that
payment becomes effective, which isn’t necessarily the same data that
the corresponding message is recorded. Once again, the Message Store
will generate these values.

Both commands and events will have these fields, since they only differ by
whether or not the type is imperative or past tense. You’ll also never put
commands in the same stream as events, but the storage mechanism can’t
tell the difference.

Chapter 3. Putting Data in a Message Store • 42

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Surveying Message DB
As mentioned earlier, Message DB is built on top of PostgreSQL. It’s a lot
simpler than you might expect a piece of messaging infrastructure to be. It
boils down to a single messages table4 with some indexes5 and user-defined
functions6 that we use to interact with the table rather than querying against
the messages table directly. We won’t walk through all of the code making up
the Message Store itself, but let’s do inspect the messages table:

CREATE TABLE IF NOT EXISTS message_store.messages (
id UUID NOT NULL DEFAULT gen_random_uuid(),
stream_name text NOT NULL,
type text NOT NULL,
position bigint NOT NULL,
global_position bigserial NOT NULL,
data jsonb,
metadata jsonb,
time TIMESTAMP WITHOUT TIME ZONE DEFAULT (now() AT TIME ZONE 'utc') NOT NULL

);

ALTER TABLE
message_store.messages

ADD PRIMARY KEY (global_position) NOT DEFERRABLE INITIALLY IMMEDIATE;

This table has columns for all the fields we’ll find on our messages. Our job
in the rest of this chapter is to write the JavaScript code we’ll use to write
messages to this table.

Scaffolding the Message Store Code
Let’s get started by laying out the bones of our Message Store code. Like all
of our submodules, we’ll have a top level that receives dependencies and uses
those dependencies to configure itself:

video-tutorials/src/message-store/index.js
const createWrite = require('./write')
function createMessageStore ({ db }) {

const write = createWrite({ db })
return {

write: write,

We start the Message Store by requireing a file that doesn’t exist yet but that
we will write immediately after the scaffolding here—the file that contains the
logic for actually writing to the Message Store.

4. https://github.com/message-db/message-db/blob/master/database/tables/messages.sql
5. https://github.com/message-db/message-db/tree/master/database/indexes
6. https://github.com/message-db/message-db/tree/master/database/functions

report erratum • discuss

Surveying Message DB • 43

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/index.js
https://github.com/message-db/message-db/blob/master/database/tables/messages.sql
https://github.com/message-db/message-db/tree/master/database/indexes
https://github.com/message-db/message-db/tree/master/database/functions
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Next, we define createMessageStore, the top-level, dependency-receiving function
that initializes the Message Store. It receives an object it will use for connecting
to the PostgreSQL instance where the Message Store is installed. We then
pass that db to createWrite to set up the write functionality just before returning.
Yes, scaffolding isn’t very interesting, so let’s set up that database connection.

Connecting to Message DB
Message DB is Just PostgreSQL™, so connecting to it is the same as connect-
ing to PostgreSQL. Now, we’ve been using knex for our database connections
up to this point because we were writing our own schema migrations. Message
DB ships with a schema that we won’t touch, so we don’t need knex for that.
We’ll just use the pg package,7 a lower-level interface into PostgreSQL. Let’s
write the wrapper code for dealing with this library that we punted on last
chapter on page 38:

video-tutorials/src/postgres-client.js
const Bluebird = require('bluebird')
const pg = require('pg')

function createDatabase ({ connectionString }) {
const client = new pg.Client({ connectionString, Promise: Bluebird })❶

let connectedClient = null❷

function connect () {
if (!connectedClient) {
connectedClient = client.connect()

.then(() => client.query('SET search_path = message_store, public'))

.then(() => client)
}

return connectedClient
}

function query (sql, values = []) {❸
return connect()
.then(client => client.query(sql, values))

}

return {❹
query,
stop: () => client.end()

}
}

module.exports = createDatabase

7. https://node-postgres.com

Chapter 3. Putting Data in a Message Store • 44

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/postgres-client.js
https://node-postgres.com
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The file exports a function that takes a connectionString so that it knows how to
connect to the PostgreSQL instance where the Message Store lives. It then:

❶ Instantiates a database connection.

❷ Message DB installs its machinery in a message_store schema inside of its
PostgreSQL database. So, when we actually connect to the database,
using client.connect, we immediately follow that with a query that sets the
search_path on that connection to include this message_store schema. If that
didn’t make any sense, this callback makes it so that the queries we issue
to the Message Store work.

❸ Defines a query function. We’ll have the rest of our code couple to this
function rather than coupling directly to the pg.Client interface. We won’t
have complicated query patterns, and this simple query interface will
suffice. We call our connect function to make sure the we’ve established
the connection and set up the search_path properly.

❹ Then we return query and a stop function. This latter we use in test so that
we can terminate our test process when all of the tests have run.

Now that we have the database connection, we can write the write function.

Writing write
Let’s start by examining the write_message8 function signature that the Eventide
schema provides:

CREATE OR REPLACE FUNCTION write_message(
_id varchar,
_stream_name varchar,
_type varchar,
_data jsonb,
_metadata jsonb DEFAULT NULL,
_expected_version bigint DEFAULT NULL

)

This is a user-defined function and is the write interface that Message DB
gives us. From this, we can tell that when writing a message, we supply the
id, streamName, type, data, and metadata properties. The last parameter this function
receives, _expected_version, is used when we’re implementing optimistic concur-
rency control later in this chapter under Adding Optimistic Concurrency
Control to Our Writes, on page 47. Our job then is to write a function that

8. https://github.com/eventide-project/postgres-message-store/blob/master/database/functions/write-message.sql

report erratum • discuss

Writing write • 45

https://github.com/eventide-project/postgres-message-store/blob/master/database/functions/write-message.sql
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

receives a message and then calls this user-defined function with the values
from that message. Let’s start with the bones of the function:

video-tutorials/src/message-store/write.js
const writeFunctionSql =❶

'SELECT message_store.write_message($1, $2, $3, $4, $5, $6)'
function createWrite ({ db }) {❷

return (streamName, message, expectedVersion) => {❸
if (!message.type) {❹

throw new Error('Messages must have a type')
}

const values = [❺
message.id,
streamName,
message.type,
message.data,
message.metadata,
expectedVersion

]

return db.query(writeFunctionSql, values)
}

}

module.exports = createWrite

❶ First, we’re going to call the write_message user-defined function, so let’s
capture the SQL we’ll use in a variable here. The series of arguments with
dollar signs in front of them are how we pass variables safely to a query
using the pg library. When we get to the actual query call in just a moment,
we’ll pass an array of values, and those dollar sign values correspond to
positions in that array of values.

❷ Next, for this function to, ah, function, we need a database connection.
createWrite receives that database connection, returning the actual function
that will do the writing.

❸ The function that actually does the writing takes three arguments,
namely the streamName we’re writing to, the actual message we’re writing,
and expectedVersion, which again we use for optimistic concurrency control
and which we’ll ignore until Adding Optimistic Concurrency Control to
Our Writes, on page 47.

❹ Now, messages must have a type. The Message Store will bark at us if we
don’t supply one, so we might as well bark first and return a less cryptic
error than what PostgreSQL will give us if try to use a null value where
one is not allowed.

Chapter 3. Putting Data in a Message Store • 46

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/write.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❺ Next, we assemble the array of values we mentioned a few points up. If
you check carefully, the order of these values matches the order of the
parameters that the write_message user-defined function expects.

After completing these steps, we conclude by calling db.query to actually invoke
write_message. Note that we return the result of that call, a Promise that resolves
when the call has completed. And just like that we’ve handled simple writes.

Adding Optimistic Concurrency Control to Our Writes
In the last section we wrote code that, come hell or high water, will put mes-
sages in the Message Store. But sometimes, we’ll need a more delicate touch.

Messages have a position property that orders a message within its stream.
Streams have versions, and their version is equal to the maximum position
value of all the messages in that stream. Note that we’re talking about the
position property and not the globalPosition property, which orders messages in
the whole Message Store.

A thorough treatment of concurrency is beyond the scope of this book,
although we will touch on it lightly later in the book on page 242. But for now,
imagine if we had two instances of a component writing to the same stream.
We must ensure that writes assuming a certain state of the stream only pro-
ceed if the state of that stream hasn’t changed between the moment the
decision to write is made and when the write actually occurs.

For example, suppose that our two instances are processing bank transactions,
recording deposits. If a command to credit an account with $5 is being handled
by two instances at the same time, each is going attempt to write a Deposited
event. Getting two of those events from a single command would be, how to
say it, “career limiting”? So, what we want is for those writes to be able to
say, “Hey, write this message to the this stream, but only if the stream is still
at version 3.” That’s exactly what the expectedVersion parameters lets us do.

Eventide handles the mechanics of enforcing the expectedVersion, and in the
case of a conflict, the Promise that db.query returns will be rejected. We’ll get an
error from the database. It isn’t good form to pass raw database errors around,
so we’re going to write code to intercept the error and normalize it.

First, at the top of the file we need to pull in an error type and define a regular
expression:

video-tutorials/src/message-store/write.js
const VersionConflictError = require('./version-conflict-error')
const versionConflictErrorRegex = /^Wrong.*Stream Version: (\d+)\)/

report erratum • discuss

Adding Optimistic Concurrency Control to Our Writes • 47

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/write.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

VersionConflictError is defined in code/video-tutorials/src/message-store/version-conflict-error.js.
We won’t print it here, but it’s just a basic error that captures the name of
the stream we were trying to write to, the actual version of the stream when
we tried writing, and the version we were expecting. versionConflictErrorRegex
matches the database error we’ll get in the event of a version conflict, and it
also lets us extract from that error what the stream’s actual version was. Let’s
put these two values to use:

video-tutorials/src/message-store/write.js
return db.query(writeFunctionSql, values)

.catch(err => {
const errorMatch = err.message.match(versionConflictErrorRegex)❶
const notVersionConflict = errorMatch === null

if (notVersionConflict) {
throw err

}

const actualVersion = parseInt(errorMatch[1], 10)❷

const versionConflictError = new VersionConflictError(❸
streamName,
actualVersion,
expectedVersion

)
versionConflictError.stack = err.stack

throw versionConflictError
})

Picking up right after the db.query call and attaching a catch handler to the
return Promise, we:

❶ First, attempt to match the error we got to versionConflictErrorRegex. Why, you
ask? Well, the database is perfectly capable of throwing errors that aren’t
from version conflicts. So, we have to make sure we’re handling a version
conflict. If not, then just rethrow whatever error it was, and let nature
take its course.

❷ Now that we know we have a version conflict, we get the actual version
out of the database error.

❸ Then we instantiate the instance of VersionConflict error and throw it. That
way, the error processing above this function will have a normalized and
informative error to work with rather than a raw database error.

And that wraps up writing to the Message Store. With this function in place and
the Message Store interface defined, the config code you wrote on page 38

Chapter 3. Putting Data in a Message Store • 48

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/write.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

will start working and the parts of the system that need to write to the Message
Store will now be able to.

“Can’t Kafka Do All of This?”
I hear that question a lot when it comes to event sourcing. Kafka is a message
broker, and it as well as other message brokers are fine pieces of technology.
You might be wondering why we can’t just use something like Kafka to store
the messages instead of Eventide. Kafka—so hot on resumes right now—is
particularly is well-suited to handling large numbers of events and moving
them around.

Kafka can be configured to retain messages indefinitely, can be used to access
events that have previously been processed (necessary for projections), and
supports the concept of topics. At first blush, topics seem a whole lot like
streams.

One problem is that Kafka expects a set of topics that are defined in advance.
In an event-sourced system, we can’t know what streams are needed in
advance. For example, if we model user identities by giving them their own
event stream, we’d have to know in advance about every user who would ever
sign up for our system. This requirement is problematic at best.

Furthermore, we weren’t done with our write code until we could handle
concurrent writes with optimistic concurrency. Kafka does not have this
capability9 at this point in time, and the issue is also listed as a “Minor” pri-
ority. That prioritization is correct. As Scott Bellware put it, Kafka is a buffer
and not a Message Store.10 Its priorities shouldn’t be those of a Message Store.

Kafka and other message brokers are fine pieces of technology, but they aren’t
designed with the requirements of event sourcing in mind. They also introduce
new ops requirements, unknown failure modes, and other complications.
Those are fine prices to pay if you gain enough value. But message brokers
offer no benefits over PostgreSQL, something we’re already using anyway.

What You’ve Done So Far
You started this chapter with code that pretended to write messages to a
Message Store. You now have code that actually will. Kudos!

In the book’s introduction on page xvii we talked about principles vs. imple-
mentations. We’re using Eventide’s Message Store, and you’d need some

9. https://issues.apache.org/jira/browse/KAFKA-2260
10. https://twitter.com/sbellware/status/1068209924512145408

report erratum • discuss

“Can’t Kafka Do All of This?” • 49

https://issues.apache.org/jira/browse/KAFKA-2260
https://twitter.com/sbellware/status/1068209924512145408
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

pretty decent scale before it wouldn’t handle your needs. But there are others.
Greg Young’s EventStore11 is an example of one.

Go read about some other Message Stores—the things they do differently, the
things they do the same. If you’re particularly ambitious, you could build the
rest of this book using one of those!

Our current goal is still to be able to record video views and display the
global count of videos watched on the home page. We’re finally capturing
those views into a durable location, but as awesome as events are, they look
nothing like the data we need to display that global count. Now that we’ve got
the data in the store, how do we get it back out and in a useful shape?

That’s exactly what the next chapter is about, so make sure you’re buckled
in because it’s your humble author’s favorite part of this whole architecture.

11. https://eventstore.org/

Chapter 3. Putting Data in a Message Store • 50

report erratum • discuss

https://eventstore.org/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 4

Projecting Data into Useful Shapes
Tell me how many times this dream has played out for you. You’ve snapped
your fingers and now you have your dream job. There you are, heading in to
your first day of work. This is it! Your. Dream. Job. You look down at the
nameplate on your office door, and what title does it say just below your name?

Auditor.

What? You haven’t had this dream? Well, neither have our users. So while
storing all of our application state as a linear log of what has happened sounds
pretty amazing, how do we turn that log into a user interface that isn’t just
a linear log of everything that has happened in our system? How do we make
it not just look like an audit trail?

When I first got into microservices and the idea that autonomous Components
don’t ask or answer questions, it was this very question that held me back
from embracing this architectural style. It took me about a year for it to click.
But you’re likely a bit quicker on the uptake.

Let’s check out our system architecture again (see the figure on page 52).

So far we’ve written an Application in Chapter 1, You Have a New Project, on
page 3 and Chapter 2, Writing Messages, on page 25, and we wrote some
Message Store interaction in Chapter 3, Putting Data in a Message Store, on
page 41.

This chapter is all about Aggregators, the pieces in our system that transform
events from an auditor’s dream to things that everyone can enjoy. It answers
the question, “Now that we have all this recorded state, what do we do with
it? How do we turn these events into screens for our users?” Message stores
are fantastic for writing data, but they are exceptionally bad for rendering
screens to users. The data just isn’t in the right shape.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Components

Aggregators

View
Data

Message
Store

App

App

App

Applications

View
Data

View
Data

Our site will need to display all kinds of screens to our users, and it’s in this
chapter that you’ll learn how to turn our append-only logs of immutable
events into structures that make for fast querying and display to users. In
fact, when we get to Chapter 13, Debugging Components, on page 207, you’ll
even take the various events generated throughout the project and build
additional views from the same data. This concept of writing data in one shape
and reading it in one or more other shapes is known as Command-Query
Responsibility Segregation, or CQRS for short.

Let’s do this.

Handling Events
An Aggregator’s existence is define by a two-step process:

1. Receive an event.
2. Handle it by updating View Data somewhere.

In our case, we’re only going to use PostgreSQL tables for View Data, but as
you’ll learn, we’re not limited to only relational tables.

Chapter 4. Projecting Data into Useful Shapes • 52

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

(Re)Introducing the RDBMS
Okay, so technically we used a relational database when writing to our Mes-
sage Store in Chapter 3, Putting Data in a Message Store, on page 41. That
was optimized for writing data. In this chapter we’re going to build tables
optimized for reading data. You won’t find third normal form1 tables here.
Those are optimized for writing. What if we could build our database schema
in such a way that every screen only required querying for a single row? Let’s
start with a migration to define the schema we’re going to write to:

video-tutorials/migrations/20180303013723_create-pages.js
exports.up = knex =>

knex.schema.createTable('pages', table => {
table.string('page_name').primary()

table.jsonb('page_data').defaultsTo('{}')
})

exports.down = knex => knex.schema.dropTable('pages')

Two columns, and one of them is a JSON blob. The idea is that there are
some mostly static pages on our site. The home page is an example. We want
to get the data for these pages with a single query and no joins.

To that end, this migration creates a two-column table that houses key–value
pairs. The keys are the strings in the page_name column, and the values are
jsonb objects that default to the empty object but that will be filled out with
the data needed to render the pages they represent. For example, the home
page might have home and { "videosWatched": 42, "lastViewProcessed": 24 } for page_name
and page_data, respectively. videosWatched is the number of videos watched, and
lastViewProcessed is how we handle idempotence. It is the id of the last message
incorporated into the View Data. So if we see a message with a lower number
or equal number, then we know that the View Data already incorporates that
message.

Writing Your First Aggregator
Since this is the first Aggregator, here is the basic shape of one:

video-tutorials/src/aggregators/home-page.js
function createHandlers ({ queries }) {

return {
}

}

1. https://en.wikipedia.org/wiki/Third_normal_form

report erratum • discuss

(Re)Introducing the RDBMS • 53

http://media.pragprog.com/titles/egmicro/code/video-tutorials/migrations/20180303013723_create-pages.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
https://en.wikipedia.org/wiki/Third_normal_form
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

function createQueries ({ db }) {
return {
}

}

function build ({ db, messageStore }) {
const queries = createQueries({ db })
const handlers = createHandlers({ queries })
return {

queries,
handlers,

}
}

module.exports = build

Our Aggregators handle messages, so they have handlers. They also interact
with a database, so they have queries. There is a top-level function, which we
name build that receives dependencies, namely db and messageStore, references
to the database and the Message Store, respectively. The top-level function
passes them to the queries and handlers. This shape is not a hard-and-fast rule
for Aggregators in general, but is what most of our Aggregators will have.

With that shape in place, let’s write our message handlers.

Handling Asynchronous Messages
Message handlers are functions that receive a message and do something.
For Components that’ll mean carrying out some state-changing business
function. For Aggregators that means updating a View Data.

We define an autonomous component’s message handlers as a JavaScript
object whose keys are the message types the component handles. This
Aggregator needs to handle VideoViewed events, and when we get one, we want
to increment the global watch count by 1. So let’s write that first handler:

video-tutorials/src/aggregators/home-page.js
function createHandlers ({ queries }) {

return {
VideoViewed: event => queries.incrementVideosWatched(event.globalPosition)

}
}

createHandlers receives the queries from the top-level function, and returns an
object with key VideoViewed, whose value is a function that takes an event and
delegates the appropriate action to queries.incrementVideosWatched. At a glance,
we can tell how this Aggregator handles this event, and that’s good.

Chapter 4. Projecting Data into Useful Shapes • 54

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let’s write that query function:

video-tutorials/src/aggregators/home-page.js
function incrementVideosWatched (globalPosition) {

const queryString = `
UPDATE

pages
SET

page_data = jsonb_set(
jsonb_set(

page_data,
'{videosWatched}',
((page_data ->> 'videosWatched')::int + 1)::text::jsonb

),
'{lastViewProcessed}',
:globalPosition::text::jsonb

)
WHERE

page_name = 'home' AND
(page_data->>'lastViewProcessed')::int < :globalPosition

`

return db.then(client => client.raw(queryString, { globalPosition }))
}

Oof. That’s a gnarly query if you’re unfamiliar with PostgreSQL jsonb columns,
but we can work through it. It has the same structure as any UPDATE query
you’ve worked with before:

UPDATE
pages

SET
-- the jsonb part

WHERE
page_name = 'home' AND
(page_data->>'lastViewProcessed')::int < :globalPosition

It’s doing an UPDATE against the pages. It SETs something that we ignore until
next paragraph, and it only does it on rows WHERE certain criteria are met.
Those criteria are first that the page_name column equals home. Second, we’re
going to go into the page_data json and make sure its lastViewProcessed property,
which we’ll explicity treat as an integer, is less than the globalPosition of the
event we’re handling.

Now, what in tarnation are we SETting? It’s actually two calls to PostgreSQL’s
jsonb_set2 function. jsonb_set works similarly to JavaScript’s Object.assign that we
use throughout the book. Let’s consider the inner call first:

2. https://www.postgresql.org/docs/11/functions-json.html

report erratum • discuss

Handling Asynchronous Messages • 55

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
https://www.postgresql.org/docs/11/functions-json.html
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

jsonb_set(
page_data,
'{videosWatched}',
((page_data ->> 'videosWatched')::int + 1)::text::jsonb

),

The first argument page_data means we’re operating on the page_data column.
This is likely not a surprise since this is a two-column table, and the other
column is not a jsonb column. We’re setting a property on the object stored in
this column. What property? That’s the second argument, {videosWatched}.

Now, what value are we going to set it to? Take the videosWatched property of
the page data column, page_data ->> 'videosWatched', and cast it to an integer.
PostgreSQL doesn’t know that this is an integer property, so we tell it that it
is by adding ::int, getting us to (page_data ->> 'videosWatched')::int. Then add 1 to
it, or (page_data ->> 'videosWatched')::int + 1.

Next, we have to do some more casting because this column stores jsonb and
not integers. Unfortunately, we can’t convert directly from integers to jsonb,
so we first cast it all to text, ((page_data ->> 'videosWatched')::int + 1)::text, and then
finally from text to jsonb, ((page_data ->> 'videosWatched')::int + 1)::text::jsonb. Equivalent
JavaScript would be:

const pageData = {
videosWatched: 0,
lastViewProcessed: 0

}

const videosWatchedUpdate = {
videosWatched: pageData.videosWatched + 1

}

const result = Object.merge({}, pageData, videosWatchedUpdate)

Now, here’s the isolated outer call:

jsonb_set(
result_of_inner_call,
'{lastViewProcessed}',
:globalPosition::text::jsonb

)

It is similar, only instead of starting with the value in page_data, we start with
the value that results from updating the videosWatched count. The return value
of the inner call becomes the starting point for the second call. This time we’re
updating the lastViewProcessed property, and we’re setting it to the globalPosition
of the event we’re processing. But again, we have to cast it to text and then
again to jsonb. There are a lot colons in that last argument, so here’s a visual
breakdown of them shown in the figure on page 57.

Chapter 4. Projecting Data into Useful Shapes • 56

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

knex's
protection

against
SQLinjection

PostgreSQL
cast to t ext

PostgreSQL
cast to j sonb

:id::text::jsonb

We have :globalPosition because of knex—we’ll bind that to the value of the event’s
globalPosition. Then there’s ::text to get to text and finally ::jsonb to get to jsonb.

Getting Idempotent with It
If you were casually reading along up to this point, this is a heads-up that
what we’re about to say is possibly the most important topic when working
with microservices. We’re going to talk about idempotence.

The word “idempotence” literally means “same power,”3 and the idea is that
if a function is idempotent, there are only two states that matter—it having
been called zero times, and it having been called one or more times. Additional
calls have no additional side effects.

This is as important to microservices as oxygen is to you, dear reader. Mes-
saging. Systems. Fail. You will see the same message more than once, and it
is physically impossible to guarantee exactly-once delivery. As software
developers, we build our abstractions in the sky, but ultimately all of our
programs execute on physical hardware. So, you as the consumer of messages
in a message-based architecture must account for the fact that you’ll eventu-
ally see the same message more than once. You must write idempotent mes-
sage handlers. Go idempotent, or go home, as they say.

This handler is idempotent because of the way the increment query is written.
Notice the WHERE clause. Every event the Aggregator processes will go through
this query, and the query only updates rows whose lastViewProcessed property
is less than the id of the current event. So, if we see an event a second time,
lastViewProcessed will be equal to or greater than said event, and the query

3. https://en.wikipedia.org/wiki/Idempotence

report erratum • discuss

Getting Idempotent with It • 57

https://en.wikipedia.org/wiki/Idempotence
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

becomes a no-op.4 Call it as many times as you want, we’re only going to
increment the count once for a given message.

As we write additional Aggregators and start branching into Components,
we’ll see other idempotence patterns. It isn’t always as simple as it was here,
but every message handler we write will be idempotent.

Connecting to the Live Message Flow
Now that we have an Aggregator, we need to hook it up to the live flow of
messages. An Aggregator is meant to be constantly running, picking up
messages more or less as they occur. To hook this one up to that flow, we
head back to the top-level function:

video-tutorials/src/aggregators/home-page.js
function build ({ db, messageStore }) {Line 1

const queries = createQueries({ db })-

const handlers = createHandlers({ queries })-

const subscription = messageStore.createSubscription({-

streamName: 'viewing',5

handlers,-

subscriberId: 'aggregators:home-page'-

})-

-

function init () {10

return queries.ensureHomePage()-

}-

-

function start () {-

init().then(subscription.start)15

}-

-

return {-

queries,-

handlers,20

init,-

start-

}-

}-

Line 4 calls messageStore.createSubscription, which doesn’t exist yet. We’ll write
that in the next chapter, Chapter 5, Subscribing to the Message Store, on
page 65. For now, we know it as a function that takes three things:

• A streamName to subscribe to. When you hook into the live flow of messages,
you do so by observing a specific stream, particularly a category stream.

4. https://en.wikipedia.org/wiki/NOP

Chapter 4. Projecting Data into Useful Shapes • 58

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
https://en.wikipedia.org/wiki/NOP
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

• handlers to handle (in an idempotent manner!) the messages on that stream.
As we said on page 54, we represent handlers as a JavaScript object whose
keys are the message types we handle.

• A globally unique subscriberId. When we write the subscription code in
Chapter 5, Subscribing to the Message Store, on page 65, we’ll use streams
to record how far along in the flow of messages a given subscription is.
The name of that stream is partially derived from this subscriberId, which
is why they must be globally unique.

Merely creating a subscription doesn’t actually start the flow of messages,
however—that’s what the start function at line 14 is for. We’re taking the
convention that every autonomous component must expose a start function
to actually begin its polling cycle. We don’t want that cycle to start in test,
for example.

This start function has one piece of work to do before releasing the message
hounds. queries.incrementVideosWatched, which you wrote on page 55, assumes
that the row it’s going to update exists. This assumption is a lot easier than
checking to see if it exists every time we process a message, but it does mean
we need to put that row in place. So, start calls init, which in turn calls
queries.ensureHomePage:

video-tutorials/src/aggregators/home-page.js
function ensureHomePage () {

const initialData = {
pageData: { lastViewProcessed: 0, videosWatched: 0 }

}

const queryString = `
INSERT INTO

pages(page_name, page_data)
VALUES

('home', :pageData)
ON CONFLICT DO NOTHING

`

return db.then(client => client.raw(queryString, initialData))
}

This function sets up what this row looks like before we’ve seen any messages
and then inserts it into the database using ON CONFLICT DO NOTHING. We’ll insert
this row exactly once, no matter how many times we start this Aggregator.

Congrats! You just wrote your first Aggregator. You took the flow of VideoViewed
events and turned it into a View Data that the home page application can
use. You could make up additional aggregations, and in fact, the exercises at

report erratum • discuss

Connecting to the Live Message Flow • 59

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

the end of this chapter include a challenge to do that. This is where message-
based architectures become particularly interesting. You can slice and dice
the same source data into whatever shape is required. And since you were
saving all that source data, you can do this going all the way back to when
you first turned the system on.

Okay, break time is over, we still have a little work to do to connect this the
running system.

Configuring the Aggregator
We need to pull this Aggregator into config.js and modify src/index.js so that it
calls the Aggregator’s start function. config.js first, then start:

video-tutorials/src/config.js
// ...
const createHomePageAggregator = require('./aggregators/home-page')
function createConfig ({ env }) {

// ...
const homePageAggregator = createHomePageAggregator({

db: knexClient,
messageStore

})
const aggregators = [

homePageAggregator,
]
const components = [
]
return {

// ...
homePageAggregator,
aggregators,
components,

}
}

We start by requireing the Aggregator. Then inside of createConfig we instantiate
it by passing it the db and messageStore reference that were instantiated in code
represented by the ellipses—we won’t keep reprinting the configuration from
previous chapters. The we set up an array named Aggregators and put home-
PageAggregator in it. We’ll use this array to start all of our Aggregators. Since
we’re here in the file, we also make a similar array for components. It’s empty
for now because we won’t write our first Component until Chapter 6, Regis-
tering Users, on page 83. Lastly, we add homePageAggregator, aggregators, and
components to config’s return object.

Now that these pieces are configured, we can start this Aggregator in src/index.js:

Chapter 4. Projecting Data into Useful Shapes • 60

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/index.js
function start () {

config.aggregators.forEach(a => a.start())
config.components.forEach(s => s.start())
app.listen(env.port, signalAppStart)

}

To the app.listen call that starts the Express application, we added a couple of
lines to start all the Aggregators and Components. config.aggregators.forEach loops
over the aggregators array we set up in config.js and calls each Aggregator’s start
function. It does the same thing for components, which at this point is empty.

And just like that, you have an Aggregator that is configured to connect to
the live flow of messages and aggregate a View Data the home page Application
can use to show the global videos watched count.

Having the Home Page Application
Use the New View Data
Speaking of the home page application, it currently isn’t using our Aggregator’s
output. Let’s fix that:

video-tutorials/src/app/home/index.js
function createQueries ({ db }) {

function loadHomePage () {
return db.then(client =>
client('pages')

.where({ page_name: 'home' })

.limit(1)

.then(camelCaseKeys)

.then(rows => rows[0])
)

}

return {
loadHomePage

}
}

We just need to modify the loadHomePage query. Instead of querying the mono-
lithic videos table, we’re going to query the special-purpose pages table. We
want the one where page_name is equal to home. Notice how there was no sum-
mation to do, no joins. We built laser-focused View Data to serve this partic-
ular page. If we have other View Data needs, we can build them using all the
same events, and the home page Application won’t have to change one wit.
That’s the power of autonomy.

report erratum • discuss

Having the Home Page Application Use the New View Data • 61

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/home/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Coming to Terms with Data Duplication
With all this talk of multiple aggregations from the same source data, you
may be thinking that sounds like a lot of duplicated data. What developers
have not had the mantra “Thou shalt not duplicate data” hammered into
them? Surely, we sin against everything our profession has taught us!

It is important to not duplicate data, but what that really means is do not
duplicate the authoritative source of truth. We can make as many aggregations
as we want precisely because they are not the source of truth. The events in
the Message Store are. As the diagram here illustrates, we can aggregate as
much as we like:

global_videos_watched

videos_watched

3

video_watch_counts

video_id count

12345 2

54321 1

pages

page_name page_data

home

{
 v i deosWat ched: 3,
 l ast Vi deoUpl oadedI d: ' 54321' ,
 l ast Vi deoUpl oadedName: ' ES Rox! '
}

VideoUploaded
videoId: '12345'
name: 'ES FTW!'

VideoWatched
videoId: '12345'

VideoUploaded
videoId: '54321'
name: 'ES Rox!'

VideoWatched
videoId: '54321'

VideoWatched
videoId: '12345'

Those are three equally valid representations derived from the same, single
source of truth.

Traditional MVC also duplicates derivations. Joins and multiple queries
assembled to render responses are just derivations of whatever your write
model is. The difference is that in traditional MVC, you constantly repeat
generating those derivations with every request. We know exactly what the
home page needs, and since events are immutable and append-only, once an
event is applied, our derivations cannot change until a new event arrives. So
why bother reconstructing our home page view on every request?

Now this doesn’t mean that what we did with the home Application is always
the right way to aggregate data—only a detailed system analysis can reveal
that. But when we’ve separated writes and reads and shed the assumptions
that MVC makes, we find we have a lot of powerful tools at our disposal that
were previously off-limits.

What You’ve Done So Far
Welcome to the wonderful world of CQRS. Up to this point you had append-
only streams of events but no clear way to turn that into what the home page

Chapter 4. Projecting Data into Useful Shapes • 62

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Application needed to fulfill the requirement of showing a global videos
watched count. Now you’ve learned how to do that, and in so doing have
unleashed one of the biggest superpowers this architecture can provide.

You also learned about idempotence. You’re going to encounter that word a
lot in this book. As light-hearted as we can be with corny pop culture refer-
ences throughout the rest of this project, there is none of that when it comes
to idempotence. To make light of idempotence is to fail at our task.

To really drive that point home, modify queries.incrementVideosWatched in code/video-
tutorials/src/aggregators/home-page.js and remove the bit of the WHERE clause that
made the handler idempotent. Run the project and click the button a few
times. Then, stop the project and restart it. Notice how the counts go up even
though no new videos were watched. Now imagine that instead of aggregating
view counts, this were a service performing seven-figure wire transfers.
#IdempotentLife

Also, given what you learned here, how might you write an Aggregator that
counts how many videos a particular user has watched? Or how about the
number of times a particular video has been watched? How would you shape
your target View Data? You can use the home page Aggregator you wrote as
a template for starting a new Aggregator.

We have the engine set up, now we just need to put the gas in it. In the next
chapter we’ll augment the Message Store code to support subscriptions, which
will get messages flowing into our Aggregators. Let’s get us flowing to the next
chapter.

report erratum • discuss

What You’ve Done So Far • 63

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 5

Subscribing to the Message Store
I heard a story while taking a French class once about a royal advisor talking
to the king about the development of the printing press.

“I have some good news and some bad news, your majesty,” the advisor said.

“The good news first,” the king replied.

“Books are everywhere.”

“The bad news, then?”

“No one knows how to read, Sire,” the advisor lamented.

You have enough Message Store code to write state as append-only streams
of immutable events. We don’t yet have any way get the messages back out.
The books are there, but no one is continuously reading them.

That’s what you’re going to fix in this chapter, building the mechanism that
components will use to subscribe to the Message Store. Hopefully polling does
not offend your software design sensibilities because that’s what the solution
is based on. But for accepting polling, you get a robust way for various sub-
scribers to see messages as they’re written. That enables communication
between components in the system, all while keeping those components
autonomous. And autonomous components will help you maintain high levels
of productivity and sanity.

Sketching the Subscription Process
The subscription code falls into three categories:

• Managing the current read position on page 68
• Fetching and processing batches of messages on page 69
• Orchestrating the subscription on page 71

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The subscription code will use the Message Store for all of its data storage so
you’ll get more practice writing to and reading from the store.

Before diving into these categories, let’s tour the basic shape of the subscrip-
tion code. It’s found in video-tutorials/src/message-store/subscribe.js:

video-tutorials/src/message-store/subscribe.js
const Bluebird = require('bluebird')
const uuid = require('uuid/v4')

const category = require('./category')

function configureCreateSubscription ({ read, readLastMessage, write }) {
}

module.exports = configureCreateSubscription

This outer function receives as dependencies the functions from the Message
Store we’ll use to implement subscriptions. read retrieves all the messages in
a given stream and is how subscribers get their batches of messages to pro-
cess, whereas readLastMessage and write are for managing read position. You’ll
write read and readLastMessage in this chapter, and you wrote write in Chapter
3, Putting Data in a Message Store, on page 41.

This function returns a function that actually builds the subscription. Let’s
add the shell of this second function:

video-tutorials/src/message-store/subscribe.js
function configureCreateSubscription ({ read, readLastMessage, write }) {

return ({❶
streamName,
handlers,
messagesPerTick = 100,
subscriberId,
positionUpdateInterval = 100,
tickIntervalMs = 100

}) => {
const subscriberStreamName = `subscriberPosition-${subscriberId}`❷

let currentPosition = 0
let messagesSinceLastPositionWrite = 0
let keepGoing = true
return {❸
loadPosition,
start,
stop,
tick,
writePosition

}
}

}

Chapter 5. Subscribing to the Message Store • 66

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❶ These are the parameters that code setting up a subscription passes in.
Here’s what they mean:

streamName Consumers subscribe to a stream, and this is the name of
that stream. We always subscribe to category streams. Turn back to
the explanation on page 33 if you need a refresher on the differences
between stream types.

handlers An object whose keys are message types and whose values are
functions that receive a message as the sole parameter (e.g., {VideoViewed:
function (event) { }). This object defines which messages the subscription
cares about.

A property of these handlers that CANNOT BE OVERSTATED
ENOUGH!1 is that they must be idempotent. An idempotent function
is one where calling it once or calling it a thousand times makes no
difference. Every time we write a subscription handler in this book,
we absolutely must, no questions asked, consider idempotence. Why?
Because we have no guarantees that we’ll only handle a given message
once. Networks fail, and until we can reinvent the physical laws of
the universe, we’ll have to settle for idempotence.

messagesPerTick The maximum number of messages to process in one
polling loop. Defaults to 100, and not every subscription needs the
same value.

subscriberId Consumers identify themselves with this argument. This will
become part of how read position is stored, so it must be globally
unique across all subscriptions.

positionUpdateInterval A subscription will write its position to the Message
Store after processing this many messages.

tickIntervalMs When a subscription queries for new messages to process
and finds none, it will wait this number of milliseconds before querying
again. A lower number means more queries, but it also means handling
messages closer to real time. Different components can have different
frequencies.

❷ Now set up a few bookkeeping variables. subscriberStreamName builds the
stream name this subscription will use to persist its read position. Do
you see why a globally unique subscriberId is needed? Also, components can

1. Here are some more exclamation points to really stress the point: !!!!!!!!

report erratum • discuss

Sketching the Subscription Process • 67

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

subscribe to multiple streams, and each subscription needs a unique
subscriberId.

currentPosition tracks the last message processed, and messagesSinceLastPosition-
Write tracks how many messages have been processed since the last time
the subscription wrote its position to the store. The polling loop code uses
keepGoing to know if it should keep polling.

❸ This inner function ultimately returns an object full of functions, and this
is that object. We spend the rest of this chapter writing the functions
returned in this object.

Managing the Current Read Position
Imagine you’re a Component subscribing to some category stream in the
system. This is the sort of thing you could make a Halloween costume out of.
Now imagine that you’re just booting up. The first thing you need to do is
load your last committed read position.

What do you know about your committed read positions? First, you know
that they’re stored in a stream whose name is in subscriberStreamName, so the
position will be in a message. How’s that for dogfooding the Message Store?
Second, you know you only write to this stream every positionUpdateInterval
messages, so when you’re first getting started, you won’t actually find any
written position in the store. Also, you’re just appending to this stream the
now-current read position, meaning the last message in this stream is the
only one you need. Did the outer function above receive a way to retrieve the
last message in a stream?

You’ll load the read position with the function loadPosition:

video-tutorials/src/message-store/subscribe.js
function loadPosition () {

return readLastMessage(subscriberStreamName)
.then(message => {
currentPosition = message ? message.data.position : 0

})
}

It uses the received readLastMessage function to read the last message from the
subscriberStreamName stream. then if it found such a message, it sets currentPosition
to the position property of that message’s data. Otherwise, we’re starting from 0.

Next up, after we process each message, we have to do some bookkeeping
and check to see if it’s time to commit the read position. Enter updateReadPosition:

Chapter 5. Subscribing to the Message Store • 68

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/message-store/subscribe.js
function updateReadPosition (position) {

currentPosition = position
messagesSinceLastPositionWrite += 1

if (messagesSinceLastPositionWrite === positionUpdateInterval) {
messagesSinceLastPositionWrite = 0

return writePosition(position)
}

return Bluebird.resolve(true)
}

It receives position, which will be the globalPosition of the message that was just
processed and sets currentPosition to that value. Since it just processed another
message, that means messagesSinceLastPositionWrite needs to go up by one, and
finally it checks to see if it has processed positionUpdateInterval messages since
the last time it wrote to the read position. If so, then it calls writePosition to go
ahead an write this new position:

video-tutorials/src/message-store/subscribe.js
function writePosition (position) {

const positionEvent = {
id: uuid(),
type: 'Read',
data: { position }

}

return write(subscriberStreamName, positionEvent)
}

This function also receives the position of the last processed message and con-
structs an event to record that position. We use events of the type Read—past
tense, sounds like “red”—to track these positions. Then we write the event to
the subscriberStreamName stream. We don’t include any metadata because there is
no meaningful traceId or userId we could use here. And that does it for managing
the read position. Next up is fetching and processing the messages.

Fetching and Processing Batches of Messages
You’ll write the function for reading messages from a stream on page 75. It’ll
default to reading messages from position 0, but it will accept a fromPosition
parameter to let you read from a different position in the stream. Right now
is when we use that parameter:

video-tutorials/src/message-store/subscribe.js
function getNextBatchOfMessages () {

return read(streamName, currentPosition + 1, messagesPerTick)
}

report erratum • discuss

Fetching and Processing Batches of Messages • 69

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

To get the next batch, you just delegate to read using the streamName, currentPo-
sition + 1, and messagesPerTick values—currentPosition + 1 because the Eventide
function that queries for the next batch of messages uses >= in the global_position
conditional in its WHERE clause:

CREATE OR REPLACE FUNCTION get_category_messages(
category varchar,
"position" bigint DEFAULT 1,
batch_size bigint DEFAULT 1000,
-- ...

)
-- ...

SELECT
-- ...

FROM
messages

WHERE
category(stream_name) = $1 AND
global_position >= $2';

-- ...

We want the messages after the last one we processed. Of course, once you
have a batch, you’ll need to process it:

video-tutorials/src/message-store/subscribe.js
function processBatch (messages) {

return Bluebird.each(messages, message =>
handleMessage(message)
.then(() => updateReadPosition(message.globalPosition))
.catch(err => {

logError(message, err)

// Re-throw so that we can break the chain
throw err

})
)

.then(() => messages.length)
}

This one is a bit more involved, but the basic flow is that for each message,
you process it and then update the subscription’s read position to be the
position of the message you just processed. And if there was an error, log it.

We handle one message at a time, and that’s why we use Bluebird.each.2 It takes
an array and function that will return a Promise for each member of the array,
but it doesn’t go on to the next element until the previous one resolves. What do
we want to do with each message? Call handleMessage and then call updateReadPosition

2. http://bluebirdjs.com/docs/api/promise.each.html

Chapter 5. Subscribing to the Message Store • 70

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://bluebirdjs.com/docs/api/promise.each.html
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

with the message’s globalPosition. If there’s an error, log it using logError, a function
we won’t print here, but you can imagine what it does. When the batch is
done, return how many messages got processed. The subscription’s polling
cycle will use that count to know if it should poll again immediately or wait
tickIntervalMs before polling again.

You wrote updateReadPosition on page 69, so you just have handleMessage to write:

video-tutorials/src/message-store/subscribe.js
function handleMessage (message) {

const handler = handlers[message.type] || handlers.$any

return handler ? handler(message) : Promise.resolve(true)
}

How to actually handle the messages is what the caller supplied with handlers.
It isn’t the subscription’s job to know what messages mean. It is the subscrip-
tion’s job, though, to call those handler functions. A subscriber might not
have a handler for each message type we retrieve here, so the first step is to
see if it did supply a definition. If so, we return the result of calling that
handler with the message.

Most of the time a subscriber is going to specify exactly which message types
it handles, and it does that by the keys on the handlers object. In very rare
cases that we won’t explore until Chapter 13, Debugging Components, on
page 207, a subscriber will just want to see all types of messages. In those
cases the subscriber would supply an $any handler. This is similar in spirit
to the default case in a switch statement, and just like with a switch, a specific
handler will take priority over the more generic $any.

If the handlers object has neither a specific handler or an $any, we just return
a Promise resolving to true. If there is no handler function, then doing nothing
is how we properly handle the message.

And that’s it for fetching batches of messages and processing them. Nice work!
Now that we have all these useful functions, you just need to orchestrate
calling them.

Orchestrating the Subscription
Orchestrating the flow is kind of fun, and you’ll see a, ah, clever use of
JavaScript mechanics. There are two main functions, and a couple of helpers.
One of the main functions orchestrates calls to getNextBatchOfMessages and pro-
cessBatch. We’ll call this function tick. The other main function orchestrates
calls to tick, only doing so when it’s time to poll again. We’ll call this function
poll. Let’s go through everything in the order it would all be called.

report erratum • discuss

Orchestrating the Subscription • 71

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

First, the polling cycle doesn’t begin right when a subscriber instantiates a
subscription. This is by design—we don’t want our tests to actually start a
polling cycle, for example. So there’s a start function the outside world will call
to start the subscription, which you put into the home page Aggregator on
page 58. start’s implementation is not very exciting:

video-tutorials/src/message-store/subscribe.js
function start () {

// eslint-disable-next-line
console.log(`Started ${subscriberId}`)

return poll()
}

It gives a console message that the subscription is starting and then calls poll.
We’ll no doubt be asked to present papers at academic conferences about
this kind of breakthrough.

It’s probably worth mentioning there’s a stop function as well:

video-tutorials/src/message-store/subscribe.js
function stop () {

// eslint-disable-next-line
console.log(`Stopped ${subscriberId}`)

keepGoing = false
}

It sets that keepGoing flag to false, which matters to poll, the function you will
write next:

video-tutorials/src/message-store/subscribe.js
async function poll () {

await loadPosition()

// eslint-disable-next-line no-unmodified-loop-condition
while (keepGoing) {

const messagesProcessed = await tick()

if (messagesProcessed === 0) {
await Bluebird.delay(tickIntervalMs)

}
}

}

This function uses JavaScript’s async/await functionality, and the particulars
of that are out of scope for this book. Mozilla has some great material worth
reading,3 but the quick version is that async/await lets you write asyn-
chronous code syntactically as if it were synchronous. This is the only place

3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Chapter 5. Subscribing to the Message Store • 72

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

in the book we’ll use this because your humble author believes that Promise
chains in the style we’ll use them in this book generally reveal intent more
clearly than async/await. However, for poll, a Promise chain would muddy
the waters.

poll is defined with the async keyword before the function keyword. The first thing
to do is await the call to loadPosition. We don’t want to continue until the sub-
scription knows its starting position. It could of course always start from 0,
since all message handlers MUST BE IDEMPOTENT!, but if the category we’re
subscribing to has 1,000,000 messages in it, that’s a lot of wasted idempotence
checking. Said another way, recording and retrieving the read position is a
performance optimization and has nothing to do with correctness.

Once we have the read position loaded, then we start a potentially infinite
(gasp) loop. “An infinite loop in a single-threaded execution environment
sounds like a bad idea,” hopefully comes to your mind. Normally it would be,
but bear with it. The very next thing we do is await a call to tick. This is going
to prevent the code from moving to the next line before a tick of the polling
cycle completes, but because of how Node.js operates, it doesn’t mean that
the entire execution will block. The calls to tick will have calls to databases,
command-line programs, and possibly HTTP calls, depending on the handler.
We will not block execution.

Once the tick completes, if we processed any messages, we’ll immediately fall
through for another pass. If not, we’ll wait for tickIntervalMs milliseconds before
trying again. Of course, if keepGoing ever becomes false, the loop stops.

Now let’s write tick:

video-tutorials/src/message-store/subscribe.js
function tick () {

return getNextBatchOfMessages()
.then(processBatch)
.catch(err => {

// eslint-disable-next-line no-console
console.error('Error processing batch', err)

stop()
})

}

As we said earlier, tick orchestrates getting batches of messages and then
processing them. It’s literally a call to getNextBatchOfMessages and then funneling
them into processBatch. And if there’s an error, log it before calling stop. We’re
not going to bother trying to automatically recover from an error. If something
goes wrong at this level, we want human attention on it.

report erratum • discuss

Orchestrating the Subscription • 73

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

And that’s the subscription flow! To get this working, we just need to imple-
ment readLastMessage and read in the Message Store.

Reading the Last Message in a Stream
All of our read functions will sit in a file that exports a dependency-receiving
function that captures the database connection. Let’s write that shell now:

video-tutorials/src/message-store/read.js
function createRead ({ db }) {

return {
}

}

module.exports = exports = createRead

It receives the db and returns… something. Let’s define that something.

Eventide provides a function to get the last message from a stream.4 It’s sig-
nature is as follows:

CREATE OR REPLACE FUNCTION get_last_stream_message(
stream_name varchar

)

It just takes a stream name. Here’s some JavaScript to wrap that for our
project:

video-tutorials/src/message-store/read.js
const deserializeMessage = require('./deserialize-message')

const getLastMessageSql = 'SELECT * FROM get_last_stream_message($1)'
function createRead ({ db }) {

function readLastMessage (streamName) {
return db.query(getLastMessageSql, [streamName])
.then(res => deserializeMessage(res.rows[0]))

}
return {

readLastMessage,
}

}

First off, at the top we define getLastMessageSql to hold the SQL snippet we call.
Then we receive the streamName and feed it into db.query along with the getLastMes-
sageSql. We then pass the first result to deserializeMessage, a function we haven’t
yet written. Let’s rectify that:

4. https://github.com/eventide-project/postgres-message-store/blob/master/database/functions/get-last-message.sql

Chapter 5. Subscribing to the Message Store • 74

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
https://github.com/eventide-project/postgres-message-store/blob/master/database/functions/get-last-message.sql
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/message-store/deserialize-message.js
function deserializeMessage (rawMessage) {

if (!rawMessage) {
return null

}

return {
id: rawMessage.id,
streamName: rawMessage.stream_name,
type: rawMessage.type,
position: parseInt(rawMessage.position, 10),
globalPosition: parseInt(rawMessage.global_position, 10),
data: rawMessage.data ? JSON.parse(rawMessage.data) : {},
metadata: rawMessage.metadata ? JSON.parse(rawMessage.metadata) : {},
time: rawMessage.time

}
}

module.exports = deserializeMessage

The Message Store is a PostgreSQL database, and idiomatic RDBMSs tend
to use snake_casing. Also, position and global_position come back as strings, and
we need them as numbers. So, we just pluck out the fields from rawMessage,
converting as necessary.

It’s important to note that this function does not work on category streams,
which is fine because we won’t have a need to get the last message from a
category stream.

Reading a Stream’s Messages
Now let’s get the messages in a particular stream. We’re going to support
three classes of streams, namely, entity, category, and the $all stream. As a
refresher, entity streams are usually named something like identity-721304b9-
8ece-4c1c-aaed-efad4886023d—a category followed by a UUID. The events in this
example entity stream are also in the identity category stream. $all is a stream
containing every message in the store.

Eventide provides us with functions for entity and category streams. We’ll
write our own query for the $all stream when we get to Chapter 13, Debugging
Components, on page 207.

SQL SnippetStream Type

SELECT * FROM get_category_messages($1, $2, $3)Category

SELECT * FROM get_stream_messages($1, $2, $3)Non-category

report erratum • discuss

Reading a Stream’s Messages • 75

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/deserialize-message.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

With that in mind, let’s write read:

video-tutorials/src/message-store/read.js
const getCategoryMessagesSql = 'SELECT * FROM get_category_messages($1, $2, $3)'❶
const getStreamMessagesSql = 'SELECT * FROM get_stream_messages($1, $2, $3)'
function createRead ({ db }) {

function read (streamName, fromPosition = 0, maxMessages = 1000) {❷
let query = null // <callout id="co.messageStore.read.bookkeeping />
let values = []
if (streamName.includes('-')) {❸

// Entity streams have a dash
query = getStreamMessagesSql
values = [streamName, fromPosition, maxMessages]

} else {❹
// Category streams do not have a dash
query = getCategoryMessagesSql
values = [streamName, fromPosition, maxMessages]

}

return db.query(query, values)❺
.then(res => res.rows.map(deserializeMessage))

}
return {

read,
readLastMessage,

}
}

❶ First, let’s capture the SQL we need to call either the category or entity
stream read functions. We’ll choose which one to use in the body of the
function.

❷ Next, we get to the read function. It takes three parameters: the streamName
to read from; a starting position, fromPosition, that defaults to 0; and a
maximum number of messages to return, maxMessages, that defaults to
1,000. If a stream has more than 1,000 messages you’ll either have to
supply a bigger number there—not recommended—or handle pagination.

❶ Before we issue the query, we need to determine which SQL snippet
between getCategoryMessagesSql and getStreamMessagesSql to use. We also have
a values array to hold the arguments we’ll pass to the query. For both get-
CategoryMessagesSql and getStreamMessagesSql, we’ll pass all three parameters
this function takes, but for $all, we’ll leave off the streamName.

❸ Now we’re figuring out which type of stream we have. If streamName has a
dash, then we’re dealing with an entity stream and choose getStreamMes-
sagesSql as the query and all the arguments we received as the values.

Chapter 5. Subscribing to the Message Store • 76

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❹ However, if we didn’t get a dash, then we’re dealing with a category stream
and choose getCategoryMessages as the query.

❺ Then we finally issue the query and run the resulting messages through
deserializeMessage.

And boom, we have a function for getting the messages from a stream. The
last step in making the subscription process work is to connect the subscrip-
tions and read functions to the Message Store’s interface.

Adding the Read Functions to the Message
Store’s Interface
read and readLastMessage both sit inside a top-level dependency-receiving function
that receives a db reference. Let’s open code/video-tutorials/src/message-store/index.js
and pull these functions in:

video-tutorials/src/message-store/index.js
const createRead = require('./read')
const configureCreateSubscription = require('./subscribe')
// ...
function createMessageStore ({ db }) {

// ...
const read = createRead({ db })
const createSubscription = configureCreateSubscription({

read: read.read,
readLastMessage: read.readLastMessage,
write: write

})
return {

// ...
createSubscription,
read: read.read,
readLastMessage: read.readLastMessage,

}
}

The first step is to require the read functions we just wrote and the subscription
code. Then in the body of createMesageStore, we instantiate read, followed by
configuring createSubscription. We have to instantiate read first because two of
its functions are dependencies of the subscriptions code. write also gets passed
in to the subscription code. Finally, we add the read functions and createSub-
scription to the Message Store’s return object, making these functions available
to the rest of the system—for example, the home page Aggregator you wrote
on page 53.

report erratum • discuss

Adding the Read Functions to the Message Store’s Interface • 77

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Starting the Server
With the subscriptions in place, we can now start the server and observe the
flow of data through the system. The included docker-compose.yml file contains
an entry for a Message DB instance. You are, of course, welcome to install
Message DB directly into a PostgreSQL database by following the directions5

Message DB provides. For the duration of this book, we’ll assume you’re using
the Docker setup.

If your containers are not already running, you can start them with docker-
compose up from code/video-tutorials. Then, in another console, run npm run start-dev-
server. You should have output similar to the following:

Video Tutorials started
┌─────────┬───────────────┬───────────────┐
│ (index) │ 0 │ 1 │
├─────────┼───────────────┼───────────────┤
│ 0 │ 'Port' │ 3000 │
│ 1 │ 'Environment' │ 'development' │
└─────────┴───────────────┴───────────────┘
Started aggregators:home-page

Navigate to http://localhost:3000, and you’ll be treated to the home screen and a
“Record viewing video” button. You can click that button to simulate video views.
The home page Aggregator will eventually pick up those events and increment
the watch count. You’ll likely have to reload the page to see its effects.

What You’ve Done So Far
You had Message Store code that could write messages, and now the
autonomous components you’ll write in this system have a means to automat-
ically get new messages as they happen. Or at least close enough to “as they
happen.” You just turned the Message Store into not only a database but also
a data transport. The Message Store is now an effective communication
medium, enabling the pub/sub, decoupled architecture we’re after. You
achieved this by writing a polling mechanism that works for any of your
components in this system.

Now, polling is to software architecture as a basic rice and beans meal is to
cuisine. It isn’t fancy and it won’t get you featured at the latest architectural
conferences, but it gets the job done in a reliable way. What could possibly
be better than that? Spending countless ops hours supporting something
more complicated with unpredictable failure modes? Not only is that not a

5. https://github.com/message-db/message-db#installation

Chapter 5. Subscribing to the Message Store • 78

report erratum • discuss

http://localhost:3000
https://github.com/message-db/message-db#installation
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

great way to spend your weekends, it wouldn’t be fair to the folks that
entrusted us to build this system.

To take your learning further, think about the tunable aspects of this sub-
scription system. You can change the messages retrieved per tick, how often
the subscription writes its read position, and how often it polls for new mes-
sages. How do different values for these settings affect performance? What
kinds of functionality would need which values? For example, if you had a
Component sending email, how close to real time does it need to be? If it can
be relaxed, how might you change the defaults to have it run less frequently?

Let’s have a look at the system architecture again:

You now have a fully running message-based system! You’ve closed the loop
on how data flows through it all:

1. Users trigger video views.
2. An Application picks them up and writes events in response.
3. An Aggregator builds View Data based on those events.
4. The Application uses that View Data to update the home page.

The only kind of piece you haven’t built is, ironically, Components. Now that
you have the whole flow in place, it’s time to add your first Component. In
the next chapter, you’re going to build user registration for Video Tutorials.
It’s going to take an identity Component to do that. So what are we waiting for?
Let’s get on our way.

report erratum • discuss

What You’ve Done So Far • 79

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Part II

Fleshing Out the System

Now that we have the fundamentals down, we’re
going to apply them to fleshing out the rest of Video
Tutorials. You’re going to see how registration and
authentication work. You’ll add an email service.
You’ll build a system for transcoding videos that
our users submit. You’ll cap this part off with
building UI that can handle the asynchronous na-
ture of the system.

CHAPTER 6

Registering Users
If up to this point we had been writing banking software, we would have been
doing a rather lousy job of it. You see, we’ve left the front door wide open. The
whole two endpoints we have in our system do absolutely nothing to identify
who is calling them.

In this chapter you’re going to start adding user registration. Registration is
a process, and we’re going to see how we discover processes and capture them
in domain messages. What events capture the steps of our process? What
commands trigger those events? What Components emerge as owners of these
messages, and how do we communicate the message contract to the rest of
the world?

You’ll also learn about data validation in an eventually consistent world.
You’re probably used to having an immediate response as to whether or not
user-submitted data is valid, and maybe you’ve been wondering how to do
that in the world of asynchronous messages. You’ll learn strategies for just
this very thing as you work through this chapter.

Here again is our system architecture (see the figure on page 84), but this
time highlighting the portions we’ll be working on in this chapter.

One last reminder, if you ever forget what the different portions of the archi-
tecture are, you can refer back to the list on page 22.

Our first step is to define our registration process by discovering the domain
messages that represent it. An identity Component will emerge as the component
in our software that owns these messages. With this Component’s message
contract defined, we’ll build a register-users application that uses this contract
and lets our users submit their registration requests.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Components

Aggregators
Message

Store

App

App

App

Applications

View
Data

View
Data

View
Data

This process of discovering messages is where the real engineering work is
done. Quite frankly, knowing how to discover and define messages is more
important than code. Here we go!

Discovering Domain Messages
Whenever you add new functionality to a message-based system, the first
step is discovering the domain messages that model the new functionality.
Remember that we’ve traded implicit coupling in the database for an explicit
communication contract captured in the events. Changes to this contract are
difficult. They define communication between two or more components, and
changing this contract necessarily propagates into any component using it.
It’s easier to change an explicit contract than it is to change a monolith’s
implicit contract, but we still want to get it as correct as possible at first.

What events do we need to store state? What commands and events can cause
those events to occur? What entities emerge when we discover these messages?
We’ve skipped over this process up to this point so that we could get comfort-
able working with events, but now it’s time to learn how to discover and
define them.

Chapter 6. Registering Users • 84

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Starting with the Business Process
Before jumping into code, we need to understand the business process we’re
trying to capture in our system. Our goal is to answer questions like:

• What does our system do?
• What domain behavior are we trying to capture?
• What actions can users take?
• If our system were implemented with paper or spreadsheets, what discrete

steps emerge?

We need to register users, and when they try to register, we’ll tell them if they
succeeded or not. Maybe they sent us an invalid email address; maybe they’re
trying to register with an email address that has already been used; or maybe
something else. And of course, if they succeeded, we need to record that too.
We’ll also send them a welcome email, although we won’t implement sending
the email until Chapter 9, Adding an Email Component, on page 133.

Translating the Business Processes into Events
and Commands
Think over all your CRUD experience that MVC frameworks pushed you into.
You’re used to thinking about application functionality in terms of managing
records in a database. In that mindset you’ve likely modeled user registration
as creating a user. Given that background and the fact that events are in the
past tense, it might feel natural to define a UserCreated event. Let’s examine
that choice.

Recall how we said on page 32 that we’re dealing with domain messages—mes-
sages that capture the actual process we’re modeling. We’re not writing soft-
ware for ourselves. We’re writing it for other people, so we have to take off
our “software developer” hat and put on our “the rest of humanity” hat.
Software developers are a rather small subset of all humans, and our craft
requires thinking in ways that most people do not.

Most people don’t think in terms of CRUD operations, and when we’re trying
to model domains to serve human beings, we want our systems to name
things the same way that human beings name them. While all of our training
tells us that registration is the same thing as creating a user, the rest of
humanity likely thinks of this in terms of signing up or registering. We choose
the latter, and we’ll represent that a user has registered with a Registered event.
That event comes into being in response to a Register command.

report erratum • discuss

Starting with the Business Process • 85

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Notice how by naming the event Registered we could distinguish between when
visitors come to the site and register vs. when system administrators cause
new accounts to exist. That captures a lot more than just issuing a CREATE
query against a database table. Indeed, in the rest of this book (and hopefully
systems we write after!), we will avoid the CRUD verbs in all of our domain
modeling.

Beating a Dead Horse

I promise no equines were harmed in the writing of this book, but let’s call out a point
that really highlights why domain events should not have CRUD verbs in them.
Domain events are records of things that have happened. Consider the metaphysical
claim you’re making when you try to write a UserCreated event when a user registers
for your website.

Your user was just created? Really?

Oh, somewhere a record in a database may get created as a result of a user registering,
but if your users are really created at the moment they register, then (a) that’s amazing
that they can already type, and (b) you’re likely going to have trouble with COPPA, the
Children’s Online Privacy Protection Act of 1998, at least in the United States.

Your users aren’t getting created when they register for your application. They’re
registering. The domain event isn’t an alias for a CRUD action—it’s capturing the
user’s intent. So we’ll say they’re registering in our event names.

We may also have sad moments when users attempt to register with invalid
information. That suggests a RegistrationRejected event.

Now, we only have one command and two events here, but can we identify
an entity these messages are coalescing around?

These messages all have to do with identifying users. The act of registering
is how we distinguish one of our users from the other billions of human beings
on the planet—it’s what makes them special to our system. That suggests an
identity entity.

Dark days may arrive where users want to no longer have an account. In that
case, they’ll cause a CloseAccount command whose handling would result in an
AccountClosed event.

We could represent identity entities with the state machine as shown in the
figure on page 87.

In this chapter we’ll only implement the registration portion. Locking accounts
is an exercise at the end of Chapter 8, Authenticating Users, on page 119,
while closing accounts is not something that we address in the book.

Chapter 6. Registering Users • 86

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Fleshing Out the Identity Messages
Now that we’ve named the messages, we need to figure out what data they’ll
contain. Remember that the events are the state of the system. It won’t be
enough to simply say that a user has registered; we also need an email and
password combo. We’ll hash the password before writing these events as well
because we’re pros who care about our users.

Let’s put this Component in a folder at video-tutorials/src/components/identity. Com-
ponents provide definitions of their messages, and we’ll handle that by writing
a file named contract.md that documents what the Component does and the
message contract the Component implements. We’ll place that file in the same
directory as each Component’s code. We won’t reprint those files in full here,
but the identity Component’s contract is found in code/video-tutorials/src/compo-
nents/identity/contract.md. Do familiarize yourself with that file to know what
questions it answers. This file will be the point of reference that applications
and other Components use to write well-formed commands for the Component
and to understand the messages the Component writes. Heck, it’ll help you
as you write the Component that implements that contract.

In any case, here is an example Register command:

{
"id": "928a73ca-2925-42c9-974a-467cd96e0a44",
"type": "Register",
"data": {

"userId": "46aa6e66-adf9-40d0-bfe0-ae8ed5b70892",
"email": "user@example.com",
"passwordHash":

"$2b$10$IrxFcWAxwRQGcNbK5Zr03.aLvgFGSUSdeUGw86ONXoz3Nm.PUlycS"
}

}

report erratum • discuss

Fleshing Out the Identity Messages • 87

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

If your system needs to collect other information at registration time, maybe
a name, those would likely be included on this command as well. We’re
keeping registration simple, though.

When these are successful we’ll write Registered events such as the following:

{
"id": "10e23852-2725-4789-a4d2-4e0630b3a55d",
"type": "Registered",
"data": {

"userId": "46aa6e66-adf9-40d0-bfe0-ae8ed5b70892",
"email": "user@example.com",
"passwordHash":

"$2b$10$IrxFcWAxwRQGcNbK5Zr03.aLvgFGSUSdeUGw86ONXoz3Nm.PUlycS"
}

}

And for those cases when registration runs afoul of our business rules, we’ll
write RegistrationRejected events like these to streams in the identity category:

{
"id": "ea0835d6-a073-4a25-aca9-db75c4c153f4",
"type": "RegistrationRejected",
"data": {

"userId": "46aa6e66-adf9-40d0-bfe0-ae8ed5b70892",
"email": "not an email",
"passwordHash":

"$2b$10$IrxFcWAxwRQGcNbK5Zr03.aLvgFGSUSdeUGw86ONXoz3Nm.PUlycS",
"reason": "email was not valid"

}
}

A service also defines what stream a command must be written to, and again,
that’s defined in code/video-tutorials/src/components/identity/contract.md. In the case of
Register commands, the identity Component states they should be written to
streams in the identity:command category; for example, identity:command-2b9df609-
276f-488a-bc88-3566c5f17dc6. This is a command stream dedicated to a particular
entity, the identity whose registration we’re trying to effect.

The events listed here will go to entity streams in the identity category. We’d
find these events in a stream named identity-46aa6e66-adf9-40d0-bfe0-ae8ed5b70892.
Note that identity and identity:command are two separate categories.

Examples from Other Domains
Just in case you need to build something other than exactly the same system
we build in this book, let’s get an idea of what events from other domains
might look like.

Chapter 6. Registering Users • 88

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

If you’re working on an e-commerce solution, you probably need to allow
users to add items to carts, and also provide shipping and billing information.
These are domain events. Maybe you’ll then have ItemAddedToCart with a payload
identifying the item and the price the item had at the time it was added.

Sometimes information that comes from a single screen might actually be
hiding more than one event. I’ve seen single screens where I enter shipping
and billing information. I’d be surprised if those were handled by the same
Component, since they’re very different functions. So maybe that type of
screen implies at least two events—ShippingInformationProvided and BillingInformation-
Provided.

You’ll probably need to verify that billing information, so when you do that
you might have BillingInformationVerified because it worked or BillingInformationRejected
with some reason because the payment gateway said it didn’t work.

After you’ve taken the order, maybe a particular item is out of stock, so there’s
an ItemNotFulfilled event. Or maybe it all worked and you have an OrderShipped
event that contains tracking information.

If you were building a rental property management system, you might see
events like MaintenanceIssueReported or MaintenanceIssueResolved. In inventory man-
agement you might see ProductReceived or InspectionFailed.

As we get more into this book dealing with video tutorials, we’re going to see
events like, VideoUploaded, VideoTranscoded, and VideoTranscodingFailed.

Be very granular! You’re trying to capture what happened and reveal the
intent of those changes. If it’s something that modified your old MVC’s
database, it needs to be an event and possibly more than one. You might even
have more than one type of event that could result in the same database
operation because different intents can lead to the same result.

Adding Registration to Our System
Getting back to our system, let’s figure out what work we need to do to get reg-
istration up and running. We already mentioned the identity Component. That
doesn’t technically exist yet, but we have its contract. With our architecture we
can build against a contract even if if the backing Component doesn’t exist.

Since registration originates from a web interface, we’ll need an application
to capture the registration data and issue Register commands as illustrated in
the figure on page 90.

report erratum • discuss

Adding Registration to Our System • 89

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

And that’s it for registration. We won’t need any aggregation until adding authen-
tication in the next chapter (Chapter 8, Authenticating Users, on page 119).

Receiving User Input
We’ll make a register-users application which will take user input and write a
Register command to the Message Store. It’ll have the same structure as the
home application we saw on page 11.

This application will need to handle three different types of requests:

• Showing the registration form
• Showing a confirmation page after registration
• Receiving registration form submissions

First off, we show the registration form with:

video-tutorials/src/app/register-users/index.js
function createHandlers ({ actions }) {

function handleRegistrationForm (req, res) {
const userId = uuid()

res.render('register-users/templates/register', { userId })
}
return {

handleRegistrationForm,
}

}

This handler just shows the registration form. The Pug for it is located at video-
tutorials/src/app/register-users/templates/register.pug

Notice that we’re generating a userId and passing that into the template. We
want to generate identifiers as early as possible. This userId is included in the
registration form as a hidden field.

Next, after a user registers successfully, we will show them a confirmation
screen:

Chapter 6. Registering Users • 90

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/app/register-users/index.js
function createHandlers ({ actions }) {

// ...
function handleRegistrationComplete (req, res) {

res.render('register-users/templates/registration-complete')
}
return {

handleRegistrationForm,
handleRegistrationComplete,

}
}

This handler renders the page we’ll redirect users to after they register. It lets
them know their request was received and invites them to log in. The cynical
among us may also say that it gives a delay so that our asynchronous regis-
tration process feels less asynchronous, but we don’t hire cynics on our team.
You can see the Pug file for this screen at code/video-tutorials/src/app/register-users/
templates/registration-complete.pug.

Turning Registration Requests into Commands
Finally, we have the handler that receives our users’ registration requests:

video-tutorials/src/app/register-users/index.js
function createHandlers ({ actions }) {

// ...
function handleRegisterUser (req, res, next) {❶

const attributes = {
id: req.body.id,
email: req.body.email,
password: req.body.password

}

return actions
.registerUser(req.context.traceId, attributes)
.then(() => res.redirect(301, 'register/registration-complete'))❷
.catch(ValidationError, err =>❸

res
.status(400)
.render(

'register-users/templates/register',
{ userId: attributes.id, errors: err.errors }

)
)
.catch(next)❹

}

return {
handleRegisterUser

}
}

report erratum • discuss

Turning Registration Requests into Commands • 91

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❶ Now we’re getting to something interesting. This handler gets called when
users submit the registration form. If you look at the Pug, you’ll see that
the HTML form on that page sends us three fields, namely id, email, and
password. We use those to fields to build the object attributes that we pass
to actions.registerUser along with the request’s traceId.

We’ll go through the action in just a second on page 92, but for now we
handle three possible outcomes of this call: (a) the happy path, (b) it all
blowing up because of incorrect user input, and (c) it all blowing up for
reasons unknown.

❷ In the happy path, we redirect happy users to /register/registration-complete,
where they’ll see a message telling them they’ll get an email confirmation
of their happy registration.

❸ This catch handles the unhappy path were it was our users’ fault. This
form of a catch on a Promise chain is one of those Bluebird extensions we
mentioned earlier on page 16. We can call catch and pass it a particular
kind of error and a function. If the Promise chain throws, this catch handler
will only get invoked if the thrown error is the same type as what we
passed. In this case we’re catching ValidationErrors, which we required near
the top of the file and which actions.registerUser might throw. We can have
as many of this style of catch as we’d like on a Promise chain, and as a
preview, we’ll see an example of that while working through authentication
on page 126. Note too that we just reuse the userId in this case.

❹ Here we handle an unknown explosion. We take the noble course and
punt. Dealing with the unknown isn’t this handler’s job, so we call next(err)
so that some error-handling middleware can deal with it.

Let’s look at that action now.

Superficially Validating User Input
Here’s the registration action:

video-tutorials/src/app/register-users/index.js
function registerUser (traceId, attributes) {

const context = { attributes, traceId, messageStore, queries }

return Bluebird.resolve(context)
.then(validate)
.then(loadExistingIdentity)
.then(ensureThereWasNoExistingIdentity)
.then(hashPassword)
.then(writeRegisterCommand)

}

Chapter 6. Registering Users • 92

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

This function relies on the mechanics of Promise chains to handle control
flow, so all we have to do is declare the steps this action goes through. Each
of those steps is a reference to a function we required at the top of the file. We
start by first declaring context. Each of those functions takes a single parameter,
which will be this context. Each step will return context, but possibly with
modifications based on what the step does. They may also throw errors.

We start the chain with Promise.resolve(context) to lift ourselves into the Promise
land, followed by a call to validate to validate user input. It would be nice to
live in a world where users submit only correct information (our programs
would certainly be shorter!), but that is unfortunately not this world. We
validate that the user submitted the following:

• A password that is at least eight characters long
• A sufficiently complex password
• A valid email address
• An email address that has not already been used

We’ll get to the fourth validation case on page 95, but the first three are trivial
and are what Daniel Whitaker refers to as “superficial validation.”1 This type
of validation does not involve the state of the system. An email without @
somewhere in it is not a valid email address, regardless of how many videos
have been uploaded and watched, for example. That’s also not a property
unique to user identities in our system—there’s an RFC that defines them.2

Let’s write this superficial validation:

video-tutorials/src/app/register-users/validate.js
const validate = require('validate.js')Line 1

-

const ValidationError = require('../errors/validation-error')-

-

const constraints = {5

email: {-

email: true,-

presence: true-

},-

password: {10

length: { minimum: 8 },-

presence: true-

}-

}-

function v (context) {15

const validationErrors = validate(context.attributes, constraints)-

-

1. http://danielwhittaker.me/2016/04/20/how-to-validate-commands-in-a-cqrs-application/
2. https://tools.ietf.org/html/rfc2822

report erratum • discuss

Superficially Validating User Input • 93

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/validate.js
http://danielwhittaker.me/2016/04/20/how-to-validate-commands-in-a-cqrs-application/
https://tools.ietf.org/html/rfc2822
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

if (validationErrors) {-

throw new ValidationError(validationErrors)-

}20

-

return context-

}-

-

module.exports = v25

This is a very focused file. The first thing to note is that we’re using the validate.js
library.3 validate.js expects an object that defines the validation rules it checks
for. We define such an object, constraints, at line 5. We like our emails to look
like email addresses and not be blank, and we like our passwords to be at
least eight characters long. A production site ought to enforce better password
rules than that, and validate.js has ways to set up whatever you’d like. In fact,
you don’t even have to use validate.js. Since the validation is encapsulated in
this function, the rest of the system doesn’t care at all.

In any case, at line 16 we actually call validate.js, and it returns null if there
were no errors. If there were errors, say the email address supplied was 'hi i
am not an email lolz', we’d get back something like:

{ email: ['Email is not a valid email'] } // Indeed it isn't.

The object’s keys will match the keys of constraints, and the values will be arrays
of strings, one string for each violated constraint. If a particular field had no
problems, it won’t show up in the error object.

If we got errors, we throw a ValidationError constructed with them. Otherwise
we just return context unchanged. Congrats! Superficial validation done.

Now, ultimately a Component is responsible for enforcing its business rules,
and it is sovereign over the event streams that it writes to. The validation we
did here is not a substitute for that, and when we write the Component on
page 110, we will duplicate the email check. So why did we bother with any
validation here?

In the case of password length, the Component is only going to see a hash of the
password, so it can’t possibly tell what the plain-text password was. Unless we’re
running it on a quantum computer,4 but seeing how those aren’t yet offered by
our deployment solution (which we get to in Chapter 12, Deploying Components,
on page 195), here we are. As for validating the email address, that we could leave
to the Component, but to do so would require a command→Component processes

3. https://validatejs.org/
4. https://en.wikipedia.org/wiki/Quantum_computing

Chapter 6. Registering Users • 94

report erratum • discuss

https://validatejs.org/
https://en.wikipedia.org/wiki/Quantum_computing
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

command and writes event→Aggregator picks up event cycle, which would lead
to some unpleasant UI work and a bad user experience for registration. We’ll
do an example of this kind of user interface in Chapter 11, Building Async-Aware
User Interfaces, on page 173, but for now, we don’t want to make people just
coming to our site for the first time experience that.

Ensuring Uniqueness of Email Addresses
Next up is loadExistingIdentity, and this function is defined at:

video-tutorials/src/app/register-users/load-existing-identity.js
function loadExistingIdentity (context) {

return context.queries
.byEmail(context.attributes.email)
.then(existingIdentity => {
context.existingIdentity = existingIdentity

return context
})

}

module.exports = loadExistingIdentity

Following Eric Elliot’s advice in his article “Mocking Is a Code Smell,”5 this
function does the single job of querying View Data for a record with the given
email address. It doesn’t check to see if it actually found one because that
would be mixing I/O (the query) and branching business logic. This function’s
job is to simply issue the query, and attach the result to context. It gets access
to the queries because we put them in the context when we started the Promise
chain. Let’s write queries.byEmail:

video-tutorials/src/app/register-users/index.js
function createQueries ({ db }) {

function byEmail (email) {
return db
.then(client =>

client('user_credentials')
.where({ email })
.limit(1)

)
.then(camelCaseKeys)
.then(rows => rows[0])

}

return { byEmail }
}

5. https://medium.com/javascript-scene/mocking-is-a-code-smell-944a70c90a6a

report erratum • discuss

Ensuring Uniqueness of Email Addresses • 95

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/load-existing-identity.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
https://medium.com/javascript-scene/mocking-is-a-code-smell-944a70c90a6a
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

This is probably a good time to look at the migration that creates the View
Data that byEmail queries:

video-tutorials/migrations/20180623124103_create-user-credentials.js
exports.up = function up (knex) {

return knex.schema.createTable('user_credentials', table => {
table.string('id').primary()
table.string('email').notNullable()
table.string('password_hash').notNullable()

table.index('email')
})

}

exports.down = knex => knex.schema.dropTable('user_credentials')

It creates the user_credentials table, with columns id, email, and password_hash.

The actual check for an existing record occurs in:

video-tutorials/src/app/register-users/ensure-there-was-no-existing-identity.js
const ValidationError = require('../errors/validation-error')
function ensureThereWasNoExistingIdentity (context) {

if (context.existingIdentity) {
throw new ValidationError({ email: ['already taken'] })

}

return context
}

module.exports = ensureThereWasNoExistingIdentity

Again, this function has one job. If loadExistingIdentity had found a record using
the supplied email address, it would have attached it at context.existingIdentity.
So this function checks to see if there is anything at context.existingIdentity. If so,
it throws a ValidationError, passing in an object of the same shape as we saw in
the superficial validation on page 92.

Keep in mind that this check for a duplicate email used eventually consistent
View Data. Records show up in user_credentials after we’ve written a Register
command, after the identity Component (coming up on page 110) picks up that
command and issues a Registered event, and after the Aggregator we’ll write
on page 120 picks up that event and writes it to the user_credentials View Data.
We’ll justify validating unique emails this way on page 99.

Finishing the Application
Back to actions.registerUser, we have two steps left. hashPassword and writeRegister-
Command. Here is hashPassword:

Chapter 6. Registering Users • 96

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/migrations/20180623124103_create-user-credentials.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/ensure-there-was-no-existing-identity.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/app/register-users/hash-password.js
const bcrypt = require('bcrypt')

// We could pull this out into an environment variable, but we don't
const SALT_ROUNDS = 10
function hashPassword (context) {

return bcrypt
.hash(context.attributes.password, SALT_ROUNDS)
.then(passwordHash => {
context.passwordHash = passwordHash

return context
})

}

module.exports = hashPassword

It uses bcrypt6 to hash the password and attaches the hash at context.passwordHash.

Now that everything has checked out, we can finally write the command:

video-tutorials/src/app/register-users/write-register-command.js
function writeRegisterCommand (context) {Line 1

const userId = context.attributes.id-

const stream = `identity:command-${userId}`-

const command = {-

id: uuid(),5

type: 'Register',-

metadata: {-

traceId: context.traceId,-

userId-

},10

data: {-

userId,-

email: context.attributes.email,-

passwordHash: context.passwordHash-

}15

}-

-

return context.messageStore.write(stream, command)-

}-

20

module.exports = writeRegisterCommand-

This looks like every time we’ve called messageStore.write before. We construct
the command at line 4 using the data from context. Then we write it using the
reference to the messageStore we put into context.

6. https://www.npmjs.com/package/bcrypt

report erratum • discuss

Finishing the Application • 97

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/hash-password.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/write-register-command.js
https://www.npmjs.com/package/bcrypt
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Building the Register Application’s Router
Now that the action is complete, let’s bring all these pieces together to flesh
out this application:

video-tutorials/src/app/register-users/index.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const actions = createActions({ messageStore, queries })
const handlers = createHandlers({ actions })

const router = express.Router()

router❶
.route('/')
.get(handlers.handleRegistrationForm)
.post(
bodyParser.urlencoded({ extended: false }),
handlers.handleRegisterUser

)

router❷
.route('/registration-complete')
.get(handlers.handleRegistrationComplete)

return { actions, handlers, queries, router }
}

module.exports = build

createRegisterUsers is our dependency-receiving function that we export at the
end of the file. It receives db and messageStore, references to the View Data
database and Message Store, respectively. It instantiates the queries, actions,
and handlers we just worked through. It finally creates an express.Router. That
router mounts our three handlers and does so on two different routes.

❶ The root route mounts two of the handlers. If we GET that route, we’ll see
the registration form. If we POST to it, then we’re submitting the registration
form, and our registration handler picks it. Notice the bodyParser middleware
on that post declaration. Middlewares are functions that run before our
handler functions and get access to the incoming request and outgoing
response object. They’re used to do things like logging or do transforma-
tions on the incoming request. This middleware does the latter, receiving
the email address and password in the raw POST data and making them
available as properties on a req.body object.

❷ On the /registration-complete route, a GET request returns the registration com-
plete page. That’s probably a shocker. Yes, it’s true that if you directly type
in that URL you’ll also see the registration complete page. So, you could
have fun reloading that page over and over again if you wanted to.

Chapter 6. Registering Users • 98

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Lastly, we need to configure the register-users Application and mount it in our
Express instance. First, configuring it:

video-tutorials/src/config.js
// ...
const createRegisterUsersApp = require('./app/register-users')
function createConfig ({ env }) {

// ...
const registerUsersApp = createRegisterUsersApp({

db: knexClient,
messageStore

})
return {

// ...
// ...
registerUsersApp,

}
}

Finally, we mount it in Express:

video-tutorials/src/app/express/mount-routes.js
function mountRoutes (app, config) {

app.use('/', config.homeApp.router)
app.use('/record-viewing', config.recordViewingsApp.router)
app.use('/register', config.registerUsersApp.router)➤

}

We mount it at /register, and that wraps up the Application layer’s involvement
with registering users. Most of that likely looked like what you’ve done in
MVC projects—our event-sourced microservices architecture didn’t introduce
the need to validate user input, for example. The only part of this process
that’s unique to event-sourced microservices is that at the end of validation
we wrote a command rather than directly writing to a CRUD model.

If you make sure your Docker setup (docker-compose up) or other PostgreSQL
instances are running and restart the server at this point (npm run start-dev-
server) again, you can use the “Register” link in the upper right-hand side of
the screen to navigate to the registration form and fill it out. If you use your
favorite database viewer and the connection information in the .env file, you
can find the command issued when this form is submitted.

Validating Eventually Consistent Data
While you are successfully recording user registration requests, we still haven’t
justified the decision to use the View Data to validate that the emails supplied
during registration aren’t duplicates, a direct contradiction of what we said
on page 21 when first discussing the pieces of our architecture.

report erratum • discuss

Validating Eventually Consistent Data • 99

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/express/mount-routes.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

When making decisions like this, it’s important to ask a series of questions
because the truth is, there is no single, correct-for-all-systems answer. There
isn’t even a correct-for-all-kinds-of-data-within-the-same-system answer.
There are always trade-offs, but if you’re asking the right questions, you can
get answers that work for your needs. Consider:

• How likely is the thing you’re trying to prevent?
• How bad is it if the thing you’re trying to prevent happens?
• Whose constraint is it, anyway?
• What does “correct” mean?

For the first question, refer back to that map of a microservices-based system:

Validation has to live in one of those places. We used the Application and
View Data to validate that email addresses used in registration haven’t been
used before, by issuing a simple query. This honored the uni-directional flow
of data through the system and did not violate any of the rules of what Com-
ponents are.

“Ah, but Ethan,” you may say. “Isn’t the View Data eventually consistent?”

You might be concerned that a situation like the following could arise:

1. User 1 sends a registration request with tricksie@example.com.

2. System checks user_credentials table and lets user 1’s request through,
writing the corresponding Register command.

Chapter 6. Registering Users • 100

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

3. User 2 sends a registration request with tricksie@example.com.

4. System checks user_credentials table and lets user 2’s request through,
writing the corresponding Register command.

5. identity Component picks up user 1’s command, processing it and writing
the Registered event.

6. identity Component picks up user 2’s command, processing it and writing
the Registered event.

7. The (as of yet unwritten) Aggregator processes user 1’s event, inserting a
row into user_credentials.

8. The (as of yet unwritten) Aggregator sees a Registered event with a duplicate
email address, packs up shop, and moves to the mountains in a remote
area.

Those points are completely accurate. But here’s the thing—when we say
“eventually consistent,” we don’t mean that when the request comes in,
someone prints it out, ties it to a carrier pigeon, and sends the pigeon off to
an out-of-state location where another worker will copy down the request and
commit it to system state. We’re talking about a pretty small window—on the
order of milliseconds. Honestly, how likely is it that these two requests will
come in? In this case, I would say “not very.”

That might not be satisfying. You might be thinking along the same lines of
Nassim Nicholas Taleb, who stated in an episode of EconTalk,7 “in the presence
of the probability of ruin, you will be ruined.” Surely, if these two events get
written, there’s no recovery from that, right?

The thing is, getting these two events written isn’t ruin. You’ll see in Chapter
8, Authenticating Users, on page 119 that when someone logs in, we identify
them with the combination of email and password. Suppose that the race
condition occurs, and the Aggregator has just finished writing the first set of
credentials. The table in question would contain the following:

password_hashemailid

$0meh4$hdup@example.comuuid-1

Now the duplicate comes in, and it will have a different userId. We can already
tell these two identities apart. We could add an additional column to the
credentials table, something like needs_to_change_email. Then when the second
event comes through, we set that to true. With some UI work we could then

7. http://www.econtalk.org/nassim-nicholas-taleb-on-rationality-risk-and-skin-in-the-game/

report erratum • discuss

Validating Eventually Consistent Data • 101

http://www.econtalk.org/nassim-nicholas-taleb-on-rationality-risk-and-skin-in-the-game/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

prompt this user to change email addresses. So even if we do get the same
email address, we’re not talking about catastrophe. That table would contain
something like this:

needs_to_change_emailpassword_hashemailid

false$0meh4$hdup@example.comuuid-1

true$0me-other-h4$hdup@example.comuuid-2

If you truly are in a situation where you RELLY CANNOT HAZ DUPLICATEZ!!!!,
then what you’re saying is it’s a fundamental property of identities that no
two of them have the same email address. Up to this point we’ve been treating
the duplicate email addresses as an Application layer concern, that it’s an
annoyance to have two accounts with the same email address, but that no
fundamental laws were violated. Accordingly, we put the validation in that
layer. However, if unique email addresses are truly a fundamental property
of identities, then it’s up to the Component that owns identities to enforce
that property.

A Component could go to the Message Store and look at every identity in the
system and see if their current email address matches the one in this new
registration command. If so, it would reject the command, maybe writing a
RegistrationRejected event with an appropriate reason. That would be costly to
do on the fly, so at startup time it might compile a list of used email addresses
and stash that list in its own database table. No one else would be allowed
to use that stash, of course, because that would violate the Component’s
autonomy. But it can do whatever it wants internally.

After consulting with our business team, we’ve decided that unique email
addresses are not a fundamental property of identities. So we’ll leave the
uniqueness check in the eventually consistent Application layer. But this
discussion does show why we don’t want to rely on View Data to make deci-
sions in our systems.

Coping with Trade-Offs
Are any of these solutions perfect? No. Software never is. There are only trade-
offs. This particular case would actually be simpler in the immediately consis-
tent world of a monolith because it makes no distinction between data and
applications of that data. In exchange for that ease, you would lose the chance
to consciously reason about and select an option that meets the needs of your
system. Honest use of the system is not likely to encounter a problem here,
and if it does, the resolution isn’t too hard. As for bad-faith use of the system,
well, don’t be concerned about a 4@xor’s user experience.

Chapter 6. Registering Users • 102

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The last big question is about the definition of “correct.” This varies case-by-
case and is something that must be decided with the business team and
domain experts involved on the project. For example, suppose you’re an e-
commerce store shipping physical goods. Physical goods have this weird
property where you can’t just conjure up copies of them out of thin air. (Weird,
right? How do people deal with that?) You can’t fulfill customer orders without
actually having inventory.

You could use any of these strategies, but which one is right? If you can
immediately tell that you’re out of stock, do you really want to send your
customers away to competitors? What if you don’t have stock now, but you
will tomorrow? What’s the right strategy? Work with your business team.
That’s a good thing to do anyway.

What You’ve Done So Far
This has been one of most important chapters of this project. You just took
a business requirement and turned it into a message-backed model. As a
developer and designer of software systems, that is the crucial skill that you
bring to the table. It’ll take code to realize this design, of course, but it’s
knowing how to decompose requirements into logical steps that lets you know
what code needs to be written in the first place.

Why not try doing some more domain decomposition? Think of some other
process in your life, and discover the domain events that could model it in
software. Maybe that’s your morning routine, or maybe that’s organizing a
gathering. What distinct steps do you go through? Those are your events. Do
some of them seem to cluster around any entities? What commands could
users of your system use to kick off these steps? Don’t sweat it too much if
you’re stuck at this point. The rest of this book is going to be all about doing
this very exercise in many different contexts.

Registration did present some questions whose answers weren’t straightfor-
ward. We met those questions with questions of our own that we’ll need to
ask if we’re going to build a successful system.

As a review, those question were:

• How likely is the thing we’re trying to prevent?
• How bad is it if the thing we’re trying to prevent happens?
• Whose concern is it, anyway?
• What does “correct” mean?

We’ll take these questions with us as we consider validation in future chapters.

report erratum • discuss

What You’ve Done So Far • 103

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

With a well-defined message contract you were able to build a client of a
Component without having actually built the Component itself. You’re telling
this identity Component what to do, even though it doesn’t exist yet. If we had
two teams working on this project, with the Component’s contract defined,
one team could immediately begin working on the client application while the
other simultaneously worked on the backing Component. Proper boundaries
let you do that sort of thing, and a message-based architecture helps you
maintain those boundaries.

All that said, we don’t have a second team building that backing Component.
That’s on us and is the topic of the next chapter. It’s going to require one final
change to the Message Store, and then we can declare “done” on user regis-
tration. We have some Register commands sitting in our Component’s command
stream—let’s go handle them.

Chapter 6. Registering Users • 104

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 7

Implementing Your First Component
If you’ve ever read L. Frank Baum’s classic The Wonderful Wizard of Oz, then
you’re familiar with the trope of the man behind the curtain. The way we left
things in the previous chapter is kind of like that, only we don’t even have
anything behind the curtain—it’s good and empty there. The register-users
application is writing commands, but no one is home processing them.

We’ll fix that in this chapter. We’re working in two places here:

Components

Message
Store

We’re going to implement the identity Component and start processing those
Register commands. But handling them will require a little more from the
Message Store. We have and will continue to go on and on about idempotence.
Before processing a Register command, we need to make sure that we haven’t
already registered the user in question. For that to work we need a way to
get the current state of an identity—not an eventually consistent state, but
its state right now. So what say you to doing that right now?

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Fetching a Stream’s Current State
In Chapter 4, Projecting Data into Useful Shapes, on page 51, you built
eventually consistent View Data. That means that while they’ll eventually get
current with everything that has been written in the system, there is no
guarantee that at any particular point in time they represent the truth as best
we know it. That works for View Data, but not so much for when you’re trying
to decide, say, whether or not to process the $10 million wire transfer. We
need to know the state of an entity right now.

Entity streams are inherently without shape, since they’re just append-only
logs of immutable events. The log doesn’t directly give the state of an entity.
It’s optimized for writing and not for reading. We need to shape that stream
into something else.

Enter the Message Store’s fetch function. This is the function that implements
the event sourcing in our system. It takes the name of a stream where the
entity state we care about lives and what we call a projection. To understand
a projection, let’s talk shadow puppets.

Think of the streams of data as the stream of light emanating from a flashlight.
To make a shadow puppet you hold up your hands in various shapes. The
light hits your hands and casts the desired shadow on the wall. From the
same light, you can create different shadows by changing the position of your
hands. Your hands are the projection, the thing that gives shape to the oth-
erwise shapeless stream.

Let’s implement fetch:

video-tutorials/src/message-store/read.js
function createRead ({ db }) {

function fetch (streamName, projection) {
return read(streamName).then(messages => project(messages, projection))

}
return {

// ...
fetch

}
}

The streamName parameter tells us which stream contains the events we need.
We pass that along to read, which you implemented on page 75, to get all those
events. then we feed them into the project function, also passing in the projection
that we received.

Chapter 7. Implementing Your First Component • 106

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Commands Will Never Be Part of a Projection

We put commands and subscriber positions in streams as well as
events, so you may wonder why we keep saying “events” here and
not “messages.” Projections are groups of functions that shape
state into a useful form. Commands are not state. They are
requests to change state, so we will never use a command type in
a projection.

Let’s write project now:

video-tutorials/src/message-store/read.js
function project (events, projection) {Line 1

return events.reduce((entity, event) => {2

if (!projection[event.type]) {3

return entity4

}5

6

return projection[event.type](entity, event)7

}, projection.$init())8

}9

Notice that project is outside the dependency-receiving function createRead. It’s
a pure function and doesn’t interact with the Message Store at all. project’s
goal is to turn the array of events into a single value representing the entity
we’re projecting. To that end, it calls events.reduce. Array.prototype.reduce1 takes a
reducer function and a starting value. projection.$init is a function that returns
the starting value of the reduction, answering the question, “What is this
entity’s value before we’ve applied any events to it?” So the starting value of
the projection is the result of calling projection.$init. The reducer will get called
once and in order for each event in events, and at each iteration it receives the
current value of entity and the current event in the iteration. It must apply the
event to entity and return the resulting value.

In addition to the $init key returning the entity’s starting point, a projection
must define a key–value pair for each event type that affects the entity. The
key is the event type, and the value is a handler function that receives the
current state of the entity and the event to apply. It then returns the entity’s
value now that the event has been applied.

Let’s consider a concrete example to get the gist. We’re working on our identity
Component whose job it is to record user registrations. In the previous
chapter on page 85, we discussed that an identity could be represented as a
state machine with an isRegistered state as shown in the figure on page 108.

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce

report erratum • discuss

Fetching a Stream’s Current State • 107

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Again, we’re ignoring both locking accounts and closing accounts for now,
but it’s the presence of a Registered event that transitions an identity from the
starting state to the isRegistered state. Registered events also contain an email
property in their data as defined by the contract.md file we wrote for this Compo-
nent at code/video-tutorials/src/components/identity/contract.md.

So, we could project an identity like so:

video-tutorials/src/components/identity/load-identity.js
const identityProjection = {

$init () {
return {
id: null,
email: null,
isRegistered: false,

}
},
Registered (identity, registered) {

identity.id = registered.data.userId
identity.email = registered.data.email
identity.isRegistered = true

return identity
},

}

The $init key function defines the starting state of this entity. If we have not
applied any events, then an identity is an object with a null id and email and
false for isRegistered.

Now, the only kind of event that affects this projection right now is a Registered
event. So, we have the key Registered, matching the type of the event that we
care about, whose value is a handler function that takes the current state of
the identity and applies the Registered event, which we name registered. We apply
registered to identity by copying the necessary properties out of registered.data to

Chapter 7. Implementing Your First Component • 108

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/load-identity.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

identity. We get the userId and email, assigning them to identity at id and email,
respectively. We also set isRegistered to true because, again, finding a Registered
event in the stream means that this identity has been registered. Finally, we
return the updated identity:

If there were other events to project, then identity, now with these updated
fields, would be passed into the next handler. That handler would apply that
next event to identity, returning the result, and so on and so forth. This is a
simple projection, though, and we only care about one type of event… for
now. Wouldn’t it be a swell exercise at the end of the chapter to augment this
projection to reflect AccountLocked events?

So with an understanding of a projection’s shape, let’s return to the project
function:

video-tutorials/src/message-store/read.js
function project (events, projection) {

return events.reduce((entity, event) => {
if (!projection[event.type]) {

return entity
}

return projection[event.type](entity, event)
}, projection.$init())

}

It starts by calling reduce on the array of events, using projection.$init’s return
value as the starting value for the reduction. At line 3 it checks if projection did
not define a handler for the given event.type. If there is no handler, then much
like in an Aggregator, the correct way to handle the event is to make no
change. We signal doing nothing by just returning entity as is. However, if
there was a handler, then at line 7 we return the result of calling that handler
with the current state of the entity and the new event. That handler again

report erratum • discuss

Fetching a Stream’s Current State • 109

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/read.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

returns the entity with the event applied to it, and this return value becomes
the input entity to the next handler if one needs to be called. Now we just need
to connect fetch to the Message Store’s interface:

video-tutorials/src/message-store/index.js
function createMessageStore ({ db }) {

// ...
return {

// ...
fetch: read.fetch,➤

}
}

We hook it into the return value in the Message Store’s main file, and we’re done.

There is one limitation to our fetch function. Remember that read returns at
most 1,000 messages when we don’t tell it otherwise. This implementation
of fetch will not support projecting streams with more than 1,000 messages.
It is very unlikely that any particular stream will ever have more than that
number, so we’ll accept this limitation, and with good monitoring we’ll know
when and if we need to change this.

All right. The Message Store lets us project a stream now, and with that, you
have finished implementing the rest of our Message Store interface code. You
have lived as few dare to dream and have definitely earned a big “way to go,”
so “WAY TO GO!” Now it’s time to write that first Component.

Joining the “I Wrote a Microservice” Club
Seven chapters into this book, and this is the moment you’ve been waiting
for—your first Component! Here’s to hoping you aren’t underwhelmed.

We have two things to do with this Component. We need it to subscribe to
where its commands will be, and we need it to handle those commands. Let’s
start with the top-level function this Component defines:

video-tutorials/src/components/identity/index.js
function build ({ messageStore }) {Line 1

const identityCommandHandlers =-

createIdentityCommandHandlers({ messageStore })-

const identityCommandSubscription = messageStore.createSubscription({-

streamName: 'identity:command',5

handlers: identityCommandHandlers,-

subscriberId: 'components:identity:command'-

})-

function start () {-

identityCommandSubscription.start()10

}-

Chapter 7. Implementing Your First Component • 110

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return {-

identityCommandHandlers,-

start-

}15

}-

-

module.exports = build-

It sure seems a lot like an Aggregator at first blush. The first line defines the
dependency-receiving function that we export at the end of the file. It receives
a reference to the messageStore and sets up the identityCommandHandlers and an
identityCommandSubscription. Like in an Aggregator, these handlers are message
handlers, not the HTTP handlers you’d find in an Application.

The identityCommandSubscription subscribes to the identity:command category stream. Why
that stream? Because that’s what we decided on page 87 when we defined this
Component’s messages and recorded them in this Component’s contract.md file.

As a polling component, this Component has a start function at line 9. We first
saw this start function concept on page 58 when we wrote the home-page
Aggregator. All Components and Aggregators in this book have a start function.

Handling Register commands
Next we handle the Register commands:

video-tutorials/src/components/identity/index.js
function createIdentityCommandHandlers ({ messageStore }) {Line 1

return {-

Register: command => {-

const context = {-

messageStore: messageStore,5

command,-

identityId: command.data.userId-

}-

-

return Bluebird.resolve(context)10

.then(loadIdentity)-

.then(ensureNotRegistered)-

.then(writeRegisteredEvent)-

.catch(AlreadyRegsiteredError, () => {})-

}15

}-

}-

This handler turns the command, a request to do something, into an event,
an immutable piece of history. The first thing is to build a context at line 4 that
will flow through the Bluebird pipeline. It has the messageStore, the command,
and it pulls the identityId out of the command as well. In Chapter 9, Adding an

report erratum • discuss

Joining the “I Wrote a Microservice” Club • 111

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Email Component, on page 133, when we add email capabilities to this system,
we’ll have event handlers that need to call loadIdentity, so we can’t assume the
presence of a command in the context.

Remember, we have no guarantees that we’ll see messages only once. We
can’t just assume that this is the first time we’ve handled this command. We
have to make this handler idempotent.

Loading the Identity
How would you tell if this command has already been processed? The first
step is to fetch the identity that would be recorded if the command had already
been processed:

video-tutorials/src/components/identity/load-identity.js
const identityProjection = {

// ... body omitted
}
function loadIdentity (context) {

const { identityId, messageStore } = context
const identityStreamName = `identity-${identityId}`❶

return messageStore
.fetch(identityStreamName, identityProjection)❷
.then(identity => {
context.identity = identity❸

return context
})

}

module.exports = loadIdentity

❶ First off we need to build the name of the stream where the identity’s
events would reside. We know how to build that name because the mes-
sage contract in code/video-tutorials/src/components/identity/contract.md tells us how.
Identities are found in the identity category, and we just tack the ID on to
the end of that.

❷ Now that we have the identityStream, we fetch and project the identity, using
the function you just wrote on page 106. We’ll go through the projection in
just a moment.

❸ Next, now that we have the identity, sourced from the events in the stream
whose name we put into identityStreamName, we attach it to the context. We
follow this pattern all throughout the project—a loadX function will attach
X to context. After attaching it, we just return context so that the next part of
the pipeline can do its job.

Chapter 7. Implementing Your First Component • 112

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/load-identity.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Now let’s go through the projection again:

video-tutorials/src/components/identity/load-identity.js
const identityProjection = {

$init () {
return {
id: null,
email: null,
isRegistered: false,

}
},
Registered (identity, registered) {

identity.id = registered.data.userId
identity.email = registered.data.email
identity.isRegistered = true

return identity
},

}

This is the same projection we used as an example when writing fetch on page
106. Projections turn streams of events into current-state entities. Like all
projections in this book, it has an $init key, and the return value for that
function is the state of the entity before applying any events to it. $init here
tells us that before encountering any events, an identity has a null id and email
and that its isRegistered property is false.

Next, it defines one event handler because there’s only one event that affects
this entity, namely Registered. The handler takes the running state of the identity
as its first argument and the current event as its second argument. It assigns
the userId and email from event.data, sets isRegistered to true, and returns identity.

Making the Command Handler Idempotent
Now that we’ve fetched the identity, the next step in the pipeline on page 111
is checking to see if we’ve already handled this command:

video-tutorials/src/components/identity/ensure-not-registered.js
const AlreadyRegisteredError = require('./already-registered-error')
function ensureNotRegistered (context) {

if (context.identity.isRegistered) {
throw new AlreadyRegisteredError()

}

return context
}

module.exports = ensureNotRegistered

report erratum • discuss

Joining the “I Wrote a Microservice” Club • 113

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/load-identity.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/ensure-not-registered.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Joe asks:

Won’t Running Projections Be Really Slow?
Looping through every message in a stream every time we get a command...won’t that
grind our system to a halt?

In practice, this ends up not being a problem. Computers are fast and are getting
faster with each passing year. Also, if we’ve modeled our system correctly, it’s
unlikely that any particular entity stream—the type of stream we project—will have
1,000s of messages to project.

That said, the main strategy in keeping projection times down is something called
snapshotting. We won’t implement it in this book, but we do discuss how it works on
page 245.

All the function needs to do is see if the projected identity isRegistered. If so,
we have already processed the command, so we throw an AlreadyRegisteredError
—the handler’s pipeline will turn that into a no-op. If not, just feed context
through.

Writing the Registered Event
Referring back to the pipeline on page 111, if we’ve made it this far, then we
haven’t processed this command before, and we’re good to go with processing
it now. If we had chosen to do validation of the user’s input in the Component,
the validation would also be here. We didn’t choose that, so all that’s left is
to turn Register commands into Registered events:

video-tutorials/src/components/identity/write-registered-event.js
function writeRegisteredEvent (context, err) {

const command = context.command

const registeredEvent = {
id: uuid(),
type: 'Registered',
metadata: {
traceId: command.metadata.traceId,
userId: command.metadata.userId

},
data: {
userId: command.data.userId,
email: command.data.email,
passwordHash: command.data.passwordHash

}
}
const identityStreamName = `identity-${command.data.userId}`

Chapter 7. Implementing Your First Component • 114

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/write-registered-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return context.messageStore
.write(identityStreamName, registeredEvent)
.then(() => context)

}

module.exports = writeRegisteredEvent

This function constructs the appropriate event, copying the relevant metadata
and data from the command we pulled out of context. Then it’s just a quick write
of this event to identityStreamName, and boom, you’re registering users.

Wiring the Identity Component into the System
To get this working, wire it into the system config:

video-tutorials/src/config.js
// ...Line 1

const createIdentityComponent = require('./components/identity')-

function createConfig ({ env }) {-

// ...-

const identityComponent = createIdentityComponent({ messageStore })5

const components = [-

identityComponent,-

]-

return {-

// ...10

identityComponent,-

}-

}-

Line 2 requires the Component’s constructor. Line 5 instantiates the Compo-
nent, injecting the messageStore dependency. With the Component instantiated,
at line 7 we add it to the components array. Adding it to this array is what lets
the system know it needs to call the Component’s start function. Finally, we
add the Component to the config’s return value at line 11.

So, yeah, sorry if the first Component was underwhelming. Components
themselves aren’t really all that exciting. The overall architecture is, but the
Components themselves are honestly kind of “meh.” But at this point, you
have now captured users registering for your system. This is a crucial feature
in nearly every web-based system. And if you restart your server at this point,
you will be able to see your Register commands being turned into Registered
events.

Disambiguating “Projections” and “Replaying”
One final note before we close the chapter. Now that you’re getting a solid
foundation for building autonomous, message-based microservices, as you

report erratum • discuss

Wiring the Identity Component into the System • 115

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

continue your learning, you’re bound to come across other uses of the words
“projection” and “replaying.” Each word generally has one of two meanings.

What you did in this chapter, where you had a Component that needed the
current state of an entity to decide how to handle an event, provides the first
meaning of each. You projected the identity’s events, sourcing its current
state from those events. This can be understood as replaying the events, since
you’ll do this every time you get an event that operates on an identity. One
of the most frequent questions out there is how do you replay events without
redoing side effects? Clearly in this case there is no worry because projections
absolutely never trigger side effects. A projection’s handlers, as we use the
term in this book, always and only return new copies of entities having applied
a new event to them.

The second meaning of “project” is found in our Aggregators. Conceptually
there isn’t much different between our projections and Aggregators. Each is
taking a append-only log and projecting them into some other shape. Compo-
nents project over and over again as needed to handle messages, and Aggre-
gators do this in an ongoing manner in near real time. We use a different
term to clarify this temporal difference. Components project; Aggregators
aggregate.

Services

Aggregators
Message

Store

Project

Aggregate

The second meaning of “replay” comes the fact that you can write a new
Component or Aggregator well after you’ve started populating the Message
Store with messages. They’ll begin their subscription at the very first message
in the Message Store and work their way to the present. That’s exactly what
happened in this chapter—you wrote the Component after an application was
already writing commands to it.

Chapter 7. Implementing Your First Component • 116

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

How did you avoid reprocessing side effects in this case? The same way you
always avoid reprocessing side effects. Here’s a hint if it’s not coming to mind:
the answer starts with “idem” and ends with “potent.” Imprint that word onto
your soul.

Taking It Further
Suppose we had AccountLocked events. Here’s an example:

{
"id": "a1a1147f-41e8-4b8a-bc78-5a11af097f7e",
"type": "AccountLocked",
"data": {

"lockedTime": "2019-12-25T07:00:00.123"
}

}

Could you modify the identity projection in code/video-tutorials/src/components/identi-
ty/load-identity.js to account for this? What would the key be on the new handler?
What would you have to add to the value returned by $init?

What You’ve Done So Far
Your first Component. How does it feel? Hopefully exciting. In the previous
chapter you constructed a Component’s message contract, and an application
was able to use that contract even before the backing Component was in
place. In this chapter you put that Component in place and were able to start
processing messages that had already been written. Our system can now
register users, which means we can get our user counts up and make the
business team very happy when they’re shopping around to investors.

You implemented an idempotent message handler. Your Component does
this by fetching the current state of the entity it cares about and seeing if the
message under consideration has already been handled. Its effect would be
reflected in the projected entity. You’ll use this pattern over and over again.

Now, having users register is great, but they still can’t get into the system
and do things. We need to authenticate them, and that’s what we do next.

report erratum • discuss

Taking It Further • 117

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 8

Authenticating Users
Have you ever been to a U2 concert? Whatever you think of the band or its
members, one can hardly argue that they haven’t been a commercial success.
Even though their concert tickets tend to have assigned seats, hordes of
people will line up outside the venue hours before it opens.

If our site were a space in the physical world, that’s pretty much what “outside”
it would look like at this point. Unbelievable numbers of people have surely
registered for our soon-to-conquer-the-webs site. However, they’re sitting outside
the door and still haven’t found what they’re looking for. It’s time to let them in.

Authenticating users will be much simpler than registration was in Chapter
6, Registering Users, on page 83. We’re working everywhere in our system
except for the Components in this chapter:

We have two goals:

• Aggregate the Registered events produced by the identity Component you
wrote in Chapter 7, Implementing Your First Component, on page 105.

• Write an authenticate application to use the output of that Aggregator to au-
thenticate users, defining any necessary messages around authentication.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Aggregating Registered Events
You’ve already built the machinery for capturing user registration—we just
haven’t done anything with the events. Now you’ll build an Aggregator to turn
those Registered events into View Data you can use for authentication. Its job
is to turn Registered events into a queryable table.

Let’s start with the top-level function:

video-tutorials/src/aggregators/user-credentials.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const handlers = createHandlers({ queries })
const subscription = messageStore.createSubscription({

streamName: 'identity',
handlers,
subscriberId: 'aggregators:user-credentials'

})

function start () {
subscription.start()

}

return {
handlers,
queries,
start

}
}

module.exports = build

Standard stuff. It receives db and messageStore references and instantiates
queries, handlers, and a subscription. It subscribes to the identity category stream.
Take a moment to think about why. Much like the apocryphal Willie Sutton
answer when he was asked why he robbed banks,1 we subscribe to that cat-
egory because that’s where the Registered events are. The identity Component’s
contract.md told us that.

Next up, the handlers for the Aggregator:

video-tutorials/src/aggregators/user-credentials.js
function createHandlers ({ queries }) {

return {
Registered: event =>
queries.createUserCredential(

event.data.userId,

1. https://en.wikipedia.org/wiki/Willie_Sutton#%22Sutton's_law%22

Chapter 8. Authenticating Users • 120

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/user-credentials.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/user-credentials.js
https://en.wikipedia.org/wiki/Willie_Sutton#%22Sutton's_law%22
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

event.data.email,
event.data.passwordHash

)
}

}

This Aggregator’s only job is aggregate Registered events into authentication
View Data, so we have a single handler for that event type. This handler
merely delegates to queries.createUserCredential, passing the user’s ID, email
address, and hashed password, all of which came from the event’s data. You
will put a tear in your humble author’s eye if at this point you’re wondering
how on earth this handler is idempotent. Fear not fellow traveler, the query
function makes our handling of these events idempotent:

video-tutorials/src/aggregators/user-credentials.js
function createQueries ({ db }) {

function createUserCredential (id, email, passwordHash) {
const rawQuery = `

INSERT INTO
user_credentials (id, email, password_hash)

VALUES
(:id, :email, :passwordHash)

ON CONFLICT DO NOTHING
`

return db.then(client =>
client.raw(rawQuery, { id, email, passwordHash }))

}

return { createUserCredential }
}

This function performs an INSERT query to make a row for each user. We make
this INSERT idempotent by adding an ON CONFLICT DO NOTHING clause. This table,
defined on page 96, made the id column the primary key. If we were to see
the same Registered event a second time, we would get a conflict on that primary
key. Since we tell the database to DO NOTHING in that case, we effectively no-
op, ensuring that our handling of this event is idempotent.

And that is the Aggregator. In this kind of architecture, each of the pieces
remains focused and easy to reason about. We just need to connect this
Aggregator to the system config:

video-tutorials/src/config.js
// ...Line 1

const createUserCredentialsAggregator =-

require('./aggregators/user-credentials')-

function createConfig ({ env }) {-

// ...5

report erratum • discuss

Aggregating Registered Events • 121

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/user-credentials.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const userCredentialsAggregator = createUserCredentialsAggregator({-

db: knexClient,-

messageStore-

})-

const aggregators = [10

// ...-

userCredentialsAggregator,-

]-

return {-

// ...15

userCredentialsAggregator,-

}-

}-

This is a familiar wiring job. First, require the constructor at line 2 and then
instantiate the Aggregator at line 6. Then add the instance to the Aggregators
array at line 12 so that the system knows to call its start function. Finally, add
it to the configs return value at line 16.

Fantastic. That’s it for this Aggregator. Let’s authenticate those users.

Discovering the Authentication Events and Commands
Strictly speaking, we don’t need any events to handle authentication. In
Chapter 6, Registering Users, on page 83, we wrote a migration for View Data
with emails and hashed passwords. We can just query that table and then
track login status using cookies, JWTs,2 or whatever. Authentication is also
synchronous, so it doesn’t involve any Components or require commands.
This is why the term “auth service” is nonsensical. Authentication is a query,
and autonomous services—the component we’re building—don’t respond to
queries.

That said, there may still be interesting domain events around authentication.
We may want to know how often users log in or if we’re getting a lot of failed
attempts. Maybe we need to lock those accounts. We don’t really know yet,
but we can still track the events.

Our two events will be UserLoggedIn and UserLoginFailed. These events originate
from the authentication application you’ll write in this chapter, so that
application must define them. That definition lives in code/video-tutorials/src/app/
authenticate/contract.md, and please go read that file. We only reproduce here
examples of these events.

2. https://jwt.io/

Chapter 8. Authenticating Users • 122

report erratum • discuss

https://jwt.io/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Here’s an example UserLoggedIn:

{
"id": "40f969ec-d6ea-466e-beb5-d37543db162e",
"type": "UserLoggedIn",
"data": {

"userId": "e90647af-8103-4fe9-ae1f-4766103cca54"
}

}

You’ll write these to streams of the form authentication-X, where X is the user’s ID.

For UserLoginFailed events:

{
"id": "a314d64f-6e4f-4a99-bfd4-5cf5afc52846",
"type": "UserLoginFailed",
"data": {

"userId": "e90647af-8103-4fe9-ae1f-4766103cca54",
"reason": "Incorrect password"

}
}

These will go in the authentication category, just like UserLoggedIn events.

Sometimes a login attempt will fail, but we don’t know who the user is. This
is most likely because the submission used an email address that is not in
our system. In that case we won’t bother recording an event. This event
wouldn’t change our domain model. It’s important system health informa-
tion—it might reveal an attack on our system—but it isn’t domain information.
We’re not writing a DDOS detection system. We’ll log it in our server logs
where monitoring systems would pick it up.

Letting Users in the Door
With all the bricks in place, we can add the authenticate Application. Node.js
has good authentication libraries, such as Passport,3 but we’re not going to
use them. Using one could be the topic of its own dedicated tutorial, and we
want to keep the focus on microservices here.

In any case, let’s dive into the authenticate Application. It needs to do three
main things:

• Present a login form
• Log users out
• Handle login requests

3. http://www.passportjs.org/

report erratum • discuss

Letting Users in the Door • 123

http://www.passportjs.org/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

As always, let’s start with the top-level function:

video-tutorials/src/app/authenticate/index.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const actions = createActions({ messageStore, queries })
const handlers = createHandlers({ actions })

const router = express.Router()

router
.route('/log-in')
.get(handlers.handleShowLoginForm)
// ...
.post(
bodyParser.urlencoded({ extended: false }),
handlers.handleAuthenticate

)

router.route('/log-out').get(handlers.handleLogOut)

return { actions, handlers, queries, router }
}

It receives references to the db and the messageStore. Like other Applications,
it has queries, actions, HTTP handlers, and an express.Router.

We mount three endpoints total into the router. Let’s work through each of
these execution paths.

The first is a GET handler at the /log-in path. It’s handled by handlers.handleShowLoginForm:

video-tutorials/src/app/authenticate/index.js
function handleShowLoginForm (req, res) {

res.render('authenticate/templates/login-form')
}

As you probably figured, it renders the login form. We won’t reproduce the
Pug template for that form here, because it’s just standard HTML, but if you’re
curious it’s in video-tutorials/src/app/authenticate/templates/login-form.pug.

Let’s skip down and see how the /log-out route works. When users GET that
endpoint, we handle that with handlers.handleLogOut:

video-tutorials/src/app/authenticate/index.js
function handleLogOut (req, res) {

req.session = null
res.redirect('/')

}

It doesn’t take many lines to log users out. We just set their session cookie
to null and redirect them to the home page. You might be wondering what this

Chapter 8. Authenticating Users • 124

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

session cookie business is. It comes from an npm package we use when setting
up the Express app:

video-tutorials/src/app/express/mount-middleware.js
const cookieSession = require('cookie-session')
// ...
function mountMiddleware (app, env) {

const cookieSessionMiddlware = cookieSession({ keys: [env.cookieSecret] })
app.use(cookieSessionMiddlware)
// ...

}

cookie-session4 is an Express middleware that, well, manages session cookies.
Our cookies get signed so that we can know their values are authentic, and
to sign them we need a secret. That secret comes from the environment vari-
ables, and those are extracted in code/video-tutorials/src/env.js if you’re curious.
With env.cookieSecret, we instantiate an instance and store it in cookieSession
Middleware.

Next, we mount it as one of the first things in the Express app. This middleware
allows you to identify the users calling into our site. We mount it early to
know as soon as possible who’s making the request.

Back to the authenticate Application, now that you’ve completed rendering the
login form and logging users out, let’s log them in. Here is the router declara-
tion for receiving login requests again:

video-tutorials/src/app/authenticate/index.js
router

// ...
.post(

bodyParser.urlencoded({ extended: false }),
handlers.handleAuthenticate

)

Users attempt to log in by POSTing to the /log-in route. After mounting a bodyParser
(we first saw bodyParser on page 98), this route calls handlers.handleAuthenticate:

video-tutorials/src/app/authenticate/index.js
function handleAuthenticate (req, res, next) {

const {
body: { email, password },
context: { traceId }

} = req

return actions
.authenticate(traceId, email, password)❶

4. https://www.npmjs.com/package/cookie-session

report erratum • discuss

Letting Users in the Door • 125

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/express/mount-middleware.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
https://www.npmjs.com/package/cookie-session
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

.then(context => {❷
req.session.userId = context.userCredential.id
res.redirect('/')

})
.catch(AuthenticationError, () =>❸
res

.status(401)

.render('authenticate/templates/login-form', { errors: true })
)
.catch(next)❹

}

There’s a lot going on here, so let’s break it down. handlers.handleAuthenticate has
four parts:

❶ Extract the submitted email and password from the request body, and pass
that into actions.authenticate, which we’ll write right after this list.

❷ If that worked, the actions.authenticate call resolves to a context object that
will have a userCredential.id property that happens to be the user’s id. Stuff
that into the session cookie by assigning its value to req.session.userId.

❸ If logging in failed because of an incorrect email or password, re-render the
login form to show the errors to the user. We won’t tell users which one
was wrong because then 4@xors could use the login form to sniff for email
addresses.

❹ It might have failed for some other reason, so if it did, we punt.

That first part is where it’s interesting, so let’s write that action function:

video-tutorials/src/app/authenticate/index.js
function authenticate (traceId, email, password) {

const context = {
traceId,
email,
messageStore,
password,
queries

}

return Bluebird.resolve(context)
.then(loadUserCredential)
.then(ensureUserCredentialFound)
.then(validatePassword)
.then(writeLoggedInEvent)
.catch(NotFoundError, () => handleCredentialNotFound(context))
.catch(CredentialsMismatchError, () =>
handleCredentialsMismatch(context)

)
}

Chapter 8. Authenticating Users • 126

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

It receives the user-supplied email and password and builds a context to flow
through a Promise chain. That chain first visits loadUserCredential, which queries
for a user credential record matching the email. Here is the code for that:

video-tutorials/src/app/authenticate/load-user-credential.js
function loadUserCredential (context) {

return context.queries
.byEmail(context.email)
.then(userCredential => {
context.userCredential = userCredential

return context
})

}

module.exports = loadUserCredential

It’s a loadX function, and our convention is that a function with a name like
this loads something and attaches it to the context. This function is no excep-
tion. It uses the Application’s queries.byEmail to find a user credential with a
matching email address and attaches it at context.userCredential. For this to work,
we’ll of course need that query function:

video-tutorials/src/app/authenticate/index.js
function byEmail (email) {

return db
.then(client =>
client('user_credentials')

.where({ email })

.limit(1)
)
.then(camelCaseKeys)
.then(rows => rows[0])

}

This query loads from user_credentials a record with a matching email.

After loadUserCredential we need to ensure we found a user credential—can’t
authenticate a user if the user’s record doesn’t exist:

video-tutorials/src/app/authenticate/ensure-user-credential-found.js
const NotFoundError = require('../errors/not-found-error')
function ensureUserCredentialFound (context) {

if (!context.userCredential) {
throw new NotFoundError('no record found with that email')

}

return context
}

module.exports = ensureUserCredentialFound

report erratum • discuss

Letting Users in the Door • 127

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/load-user-credential.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/ensure-user-credential-found.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

If there was no matching user credential record, it throws a NotFoundError, which
will propagate back to the action. However, if there was a user credential
record, just return context.

Back to the action, the next step is to make sure the password matched. That
happens in:

video-tutorials/src/app/authenticate/validate-password.js
const bcrypt = require('bcrypt')

const CredentialMismatchError =
require('../errors/credential-mismatch-error')

function validatePassword (context) {
return bcrypt

.compare(context.password, context.userCredential.passwordHash)

.then(matched => {
if (!matched) {

throw new CredentialMismatchError()
}

return context
})

}

module.exports = validatePassword

We use bcrypt again, this time to compare the given password to the one stored
in the record. If it didn’t match, throw a CredentialMismatchError, which gets
handled back up at the action level. If the password matched the stored
record’s password, then just pass through context unchanged.

The action’s last step is to record the login. That happens in writeLoggedInEvent:

video-tutorials/src/app/authenticate/write-logged-in-event.js
function writeLoggedInEvent (context) {

const event = {
id: uuid(),
type: 'UserLoggedIn',
metadata: {
traceId: context.traceId,
userId: context.userCredential.id

},
data: { userId: context.userCredential.id }

}
const streamName = `authentication-${context.userCredential.id}`

return context.messageStore.write(streamName, event)
.then(() => context)

}

module.exports = writeLoggedInEvent

Chapter 8. Authenticating Users • 128

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/validate-password.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/write-logged-in-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Similar to the writeX functions you’ve done so far, here you just build a User-
LoggedIn event. You can find the user’s id in actionContext.userCredential—loadUserCre-
dential put that in place earlier on page 127. Then construct the stream it goes
to, following the decision we made earlier in this chapter, on page 122. Then
write the event to the messageStore and pass back context.

If this is the execution path the login request followed, then the action will
return back to the handler at this point. We do have two error handlers on
this Promise chain, though, and they handle the two errors we might have
deliberately thrown while authenticating the user.

The first handles NotFoundErrors, by calling handleCredentialNotFound and passing
in context. When you call then on a Promise, the function you give receives
whatever the last resolved value in the chain was as its argument. Sadly, catch
calls don’t work that way. They only pass in the error that was caught. In
this case we don’t actually care about the error, but we do want the context in
our catch handler. Rather than just passing a reference to handleCredentialNot-
Found—again, like we can with thens—we pass an anonymous function that
calls handleCredentialNotFound with the context.

Here is handleCredentialsNotFound:

video-tutorials/src/app/authenticate/handle-credential-not-found.js
const AuthenticationError = require('../errors/authentication-error')
function handleCredentialNotFound (context) {

throw new AuthenticationError()
}

module.exports = handleCredentialNotFound

Authentication requests can fail because of using an email address that
doesn’t exist or from using the wrong password with an otherwise valid email.
We don’t show users the difference between these because then malicious
ones would be able to figure out what emails are in our system and which
aren’t. So, we take the concept of a missing credential and normalize it to a
more generic AuthenticationError suitable for the HTTP layer.

Finally, we also handle CredentialsMismatchErrors by calling handleCredentialsMismatch
and passing context to it.

Here is handleCredentialsMismatch:

video-tutorials/src/app/authenticate/handle-credential-mismatch.js
const AuthenticationError = require('../errors/authentication-error')
function handleCredentialMismatch (context) {

const event = {
id: uuid(),
type: 'UserLoginFailed',

report erratum • discuss

Letting Users in the Door • 129

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/handle-credential-not-found.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/authenticate/handle-credential-mismatch.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

metadata: {
traceId: context.traceId,
userId: null

},
data: {
userId: context.userCredential.id,
reason: 'Incorrect password'

}
}
const streamName = `authentication-${context.userCredential.id}`

return context.messageStore.write(streamName, event).then(() => {
throw new AuthenticationError()

})
}

module.exports = handleCredentialMismatch

Again, a very focused function. Its job is to write the UserLoginFailed event and
transform the specific error into a generic one for the HTTP layer. Just like
with the last error handler, we don’t actually know which user (or if it even
was a user) typed in the incorrect password, so we set userId to null. reason
reflects the password mismatch. This time, however, since we did find a user
credential record, we do know which user is affected by this failed login. So
we write the event to that user’s authentication stream. If you later implement
account locks based on some number of incorrect tries, these are the events
you’ll key off of. Finally, we throw an AuthenticationError.

Wiring the Application to the Rest of the System
As with all of our Applications, we have the two-step dance of wiring it into
the system config and then mounting it in Express. First the config:

video-tutorials/src/config.js
// ...Line 1

const createAuthenticateApp = require('./app/authenticate')-

function createConfig ({ env }) {-

// ...-

const authenticateApp = createAuthenticateApp({5

db: knexClient,-

messageStore-

})-

return {-

// ...10

authenticateApp,-

}-

}-

Chapter 8. Authenticating Users • 130

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Again, its require the constructor (line 2), instantiate (line 5), and add it to the
return value (line 11).

Lastly, we need to mount the authenticate Application in Express:

video-tutorials/src/app/express/mount-routes.js
function mountRoutes (app, config) {

app.use('/', config.homeApp.router)
app.use('/record-viewing', config.recordViewingsApp.router)
app.use('/register', config.registerUsersApp.router)
app.use('/auth', config.authenticateApp.router)➤

}

Just plunk it at /auth off the root, and that’s a wrap on authenticating users.
If you were to run the server, register a user, and then log in with that user,
you could use your browser’s development tools to see the session cookie:

Using Third-Party Authentication
We obviously rolled our own password-based authentication system here,
but an increasing trend—and the highly recommended approach in a real-
world system—is to use third-party identity management from Facebook,
Google, Auth0, or others. How do you think one of those would fit into your
system? They end up redirecting users’ browsers to our server with special

report erratum • discuss

Using Third-Party Authentication • 131

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/express/mount-routes.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

information in the URL. How can you use that, and how does that play into
our event strategy?

What different domain event might you use to distinguish between a user
registering with an email and password vs. one of these third-party providers?
Is that distinction needed? Would you have a different event for logging in
with a third-party provider vs. logging in with a username or password?

What You’ve Done So Far
Good work! User identity is one of the most common and fundamental aspects
of any system, and even though you’re building this one with a very different
architecture than what you’re likely used to, that hasn’t stopped you from
getting users into your system. Hopefully a couple of things stand out here.
The first is that there are portions of an asynchronous, event-based system
that feel very familiar. Those parts are likely going to all be around reading
data. It really isn’t any different. The second flows from the first—do you see
how the idea of an “auth service” is a bit of a misnomer? Authentication is
simple a query against View Data. Repeat the mantra “we don’t read data out
of Components.”

Earlier on page 85 we showed an identity entity model that could support
locking accounts. In this chapter you’ve collected all the data you would need
to actually implement that. As an exercise, you might try to do so. What rules
govern locking? Number of failed login attempts? Do they have to be within
a certain time frame? Who will be able to issue the UnlockAccount command?
What Component would handle that? If you put it in the identity Component,
it’s okay to make a second subscription there. Just be sure to have start call
the second one as well.

In any case, now that you can authenticate users, you’ll probably want to
communicate with them via email. They’ll want to know about new videos,
and maybe we want to have them confirm their email address as part of reg-
istration. Sending email is our very next topic, and we’ll see how in an
autonomous services architecture adding this additional feature can be 100
percent contained to the Component implementing it.

So get ready to spam the heck outta—err, send relevant and useful email—to
your users!

Chapter 8. Authenticating Users • 132

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 9

Adding an Email Component
As a kid, I once had a youth leader who said something to the effect, “If you
love people, give them paper handouts.” I think a very similar rule applies to
users of the websites we build. If we love them, we should send them email.
Lots of it too. We want to thank them for joining, let them know when their
videos have reached certain view milestones, and inform the content creators
of all the sweet payouts they’re going to receive. Maybe you have a new puppy,
and if you do, your users really need to see that. The more the better. And
that’s exactly what you’re going to learn how to do in this chapter.

At this point in the journey you’ve seen how components in an evented
architecture communicate with one another. You’ve handled commands and
events and even built a very simple Component. In this chapter you’re going
to see some of the payoff of this learning.

I remember when I first started sending email in my MVC days. I was using
Ruby on Rails, and Rails provided life-cycle hooks for “model” objects. One
of them let you tap into when a row was first saved into the database, and it
was a common practice at the time to hook the email sending code into this
life cycle. It sort of made sense. Creating a new row in the users database
surely meant that a user had just registered? Right?

Well, no, it didn’t. Why on earth would we couple writing a row to a database
with sending an email? What do these operations have to do with one
another? That type of coupling makes change difficult.

In this chapter you’ll send registration emails to our users without touching
the existing handling of Register events. Now, sorry to disappoint, but you’re
not going to literally send emails by the end of this chapter, unless you’re
doing the suggested exercises. Why? We don’t want to make this book about
configuring Component with an email provider. We’re going to use a library

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

(SPOILER ALERT: nodemailer) that has an option for writing emails to files in
your local filesystem. This is useful in test and for not spamming people in
development. From the perspective of the architecture that you’re learning,
nothing will be affected, and when we get to configuring the mailer, you’ll
know what would need to change to actually send emails.

More importantly, though, you’re going to learn how to orchestrate the work
of more than one Component. identity doesn’t and won’t know how to send
emails—that’s the job of the send-email Component you’ll write. You’ll make
identity get send-email to do something all while communicating over pub/sub
and respecting our Component boundaries.

Discovering the Email Component Messages
The email Component will be the only part of the system that knows how to
send emails, and sending emails is all it will know about. Sending email is a
delightfully straightforward process that culminates in one of two possible
events—Sent when it worked, and Failed when it didn’t. We’ll record having sent
an email with the following:

{
"id": "c5f672bd-cf5f-4e6b-91ad-60a17cd6bbab",
"type": "Sent",
"data": {

"emailId": "e0c6e804-ae9e-4c9c-bd55-b0c049a03993",
"to": "lucky-recipient@example.com",
"subject": "Rare investment opportunity",
"text": "12 million US pounds stirling",
"html": "<blink>12 million US pounds stirling</blink>"

}
}

to, from, and subject tell us whom the email is going to, who it’s from, and what
the subject line is, respectively. Each and every email will get a unique iden-
tifier, and we store that in emailId. text and html are the plain text and HTML
versions of the email’s body, respectively.

And again, when they fail, we get Failed:

{
"id": "636401d3-6585-4887-8576-ec8003e6b380",
"type": "Failed",
"data": {

"emailId": "e0c6e804-ae9e-4c9c-bd55-b0c049a03993",
"reason": "Could not reach email provider",
"to": "lucky-recipient@example.com",
"from": "exiled-prince@example.com",
"subject": "Rare investment opportunity",

Chapter 9. Adding an Email Component • 134

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

"text": "12 million US pounds stirling",
"html": "<blink>12 million US pounds stirling</blink>"

}
}

Same as Sent, with the addition of a reason property so that we can know why
it failed.

Now that we have the events that make up the process, how does one kick it
off? By writing a Send command, of course:

{
"id": "636401d3-6585-4887-8576-ec8003e6b380",
"type": "Send",
"data": {

"emailId": "e0c6e804-ae9e-4c9c-bd55-b0c049a03993",
"to": "lucky-recipient@example.com",
"subject": "Rare investment opportunity",
"text": "12 million US pounds stirling",
"html": "<blink>12 million US pounds stirling</blink>"

}
}

Notice that emailId comes from the command. It’s up to the portion of the system
wanting to send the email to supply that ID. For idempotence to work, the
client of an idempotent component must supply the ID.

As always, we record this message contract in a contract file. We’ll name the
Component we’re building send-email, and put its message definitions in
code/video-tutorials/src/components/send-email/contract.md. With the messages necessary
for sending emails defined, our plan of attack will be to first implement this
send-email Component, and second, we’ll teach the identity Component to leverage
send-email’s capabilities.

Addressing Idempotence
Here’s the deal. SMTP1 is a wonderful protocol when it comes to getting emails
from one machine to another. Most of the time it just works. But when it
doesn’t, well, we really won’t be able to tell.

If we have our own SMTP server, we could guarantee that we sent the message,
but it could fail to arrive because of the many hops it would have to go through
across the internet. If we use a third-party email provider, we can send a
request to that provider. That request could fail after the provider has already
sent the email. So if we tried again, it might get sent twice. So what do we do?

1. https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

report erratum • discuss

Addressing Idempotence • 135

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

This is why you work with your business team.

Which failure case is worse? Not sending an email, or sending it more than
once? Is either of those cases correct for every kind of email we send? As
developers, we can’t make that call on our own. We know the technical details,
and we need to communicate the trade-offs to the business team. They know
the impact of each case better than we do, and we’re unlikely to stumble on
the best decisions on our own. And once the team has reached a decision,
DOCUMENT IT! You’ll notice that this Component’s contract file explains the
decision we made.

We’ll “send” emails by writing their data to the local filesystem. We’ll write
the email file first and then record an event of sending it. An error might occur
between writing that file and recording the RegistrationEmailSent event. If our
Component restarts after the file is written but before the event is written, it
will attempt to write the file a second time, which effectively sends the email
a second time. Our other option is to make a new email protocol, but that is
outside the scope of this book. Or left as an exercise to the reader. Take your
pick as to why we won’t do that here.

In any case, after consulting with our business team, we’ve concluded that
sending our emails more than once is preferable to not sending them at all.
Let’s start sending some.

Adding the Component
The code for send-email will go in code/video-tutorials/src/components/send-email. Let’s
begin with the top-level function of send-email:

video-tutorials/src/components/send-email/index.js
const createSend = require('./send')
function build ({

messageStore,
systemSenderEmailAddress,
transport

}) {
const justSendIt = createSend({ transport })
const handlers = createHandlers({

messageStore,
justSendIt,
systemSenderEmailAddress

})
const subscription = messageStore.createSubscription({

streamName: 'sendEmail:command',
handlers,
subscriberId: 'components:send-email'

})

Chapter 9. Adding an Email Component • 136

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

function start () {
subscription.start()

}

return {
handlers,
start

}
}

Like all message handlers in autonomous components, this function’s job is
to set up handlers and a subscription to use those handlers. This function receives
the following dependencies:

PurposeDependency

A reference to the Message StoremessageStore

The “from” address the system uses for emails it sendssystemSendEmailAddress

An object that encapsulates a specific means of sending
messages in nodemailer

transport

Briefly Introducing nodemailer
We discussed earlier that we’d use a library called nodemailer,a but the truth is that
it’s more of a suite of libraries. If you use it, you’ll always use the nodemailer core
package which manages the process of sending emails. But you also create different
“transports” which handle the particulars of sending emails with whatever provider
you use.

Out of the box, nodemailer ships with transports that work with the sendmail unix com-
mand, AWS’s SES service, and a transport that just puts the messages in memory.
Beyond these transports there are plugins for almost every email-sending product
under the sun, including SendGrid, Mailgun, and even a transport for using a Gmail
account.

We’re going to use nodemailer-pickup-transport.b This has nothing to do with small trucks.
Rather, it has to do with writing emails to files in the filesystem. There are email-
sending programs that could run independently and “pick up” these files to actually
send messages over the wire. But we’re going to use it so that when we send, we get
an artifact in our filesystem that we can inspect for testing purposes.

a. https://nodemailer.com/about/
b. https://www.npmjs.com/package/nopl8;demailer-pickup-transport

report erratum • discuss

Adding the Component • 137

https://nodemailer.com/about/
https://www.npmjs.com/package/nopl8;demailer-pickup-transport
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

In order to set up the handlers, we need one additional piece—the thing that
will actually send emails for us. We instantiate it with the mystery createSend
function that we’ll write as soon as we’re done with the top-level function
here, but it does need to know what transport we’re using. We pass its result,
the enticingly named justSendIt, along with a reference to the messageStore and
the systemSenderEmailAddress to make the handlers.

Those handlers then are used to make a subscription. Since the contract.md for this
Component says that Send commands are written to the sendEmail:command cat-
egory, that’s the category we subscribe to.

The function finishes with a start function like we have in all our autonomous
components.

We required createSend at the top of the file and used it in the top-level function.
Let’s write it now:

video-tutorials/src/components/send-email/send.js
const nodemailer = require('nodemailer')Line 1

-

const SendError = require('./send-error')-

-

function createSend ({ transport }) {5

const sender = nodemailer.createTransport(transport)-

return function send (email) {-

const potentialError = new SendError()-

-

return sender.sendMail(email)10

.catch(err => {-

potentialError.message = err.message-

throw potentialError-

})-

}15

}-

-

module.exports = createSend-

This file exports a single function at line 5. It receives the transport object we
just talked about and uses it to build a nodemailer instance that we name sender.
At line 7 it then returns a function called send that will send emails using this
instance.

send takes an object named email that should have keys from, to, subject, text,
and html. These correspond to the event properties you defined earlier in this
chapter on page 134. send calls sender.sendMail, passing it that email at line 10 and
doing any necessary error handling.

Chapter 9. Adding an Email Component • 138

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/send.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Joe asks:

What Is This potentialError Business?
Why would any right-thinking person instantiate an error before we know that one
has occurred? Due to the way Node.js works, if we do get an error when trying to
send this email, when we get to the catch() handler, we won’t have the actual stack
trace of where the error occurred. By instantiating an error at line 8, we capture a
stack trace that points to this function. Then if there is an error, we just copy over
its message. Knowing what function led to the error being thrown will be very useful
for debugging.

Sending the Email
With the infrastructure bits in place, we can move onto actually sending the
email. Let’s write the handler for the Send command:

video-tutorials/src/components/send-email/index.js
function createHandlers ({

justSendIt,
messageStore,
systemSenderEmailAddress

}) {
return {

Send: command => {
const context = {

messageStore,
justSendIt,
systemSenderEmailAddress,
sendCommand: command

}

return Bluebird.resolve(context)
.then(loadEmail)
.then(ensureEmailHasNotBeenSent)
.then(sendEmail)
.then(writeSentEvent)
// If it's already sent, then we do a no-op
.catch(AlreadySentError, () => {})
.catch(

SendError,
err => writeFailedEvent(context, err)

)
}

}
}

report erratum • discuss

Sending the Email • 139

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

It uses a Promise chain to build a pipeline of functions that sends email. The
first step is to build the context for the pipeline. That context contains:

messageStore
The reference to the Message Store

justSendIt
The function we wrote to wrap the actuation of nodemailer

systemSenderEmailAddress
The “from” address for our system emails

sendCommand
The Send command that we’re handling

The first step is to project the email’s stream to make sure we haven’t already
sent it:

video-tutorials/src/components/send-email/load-email.js
const emailProjection = {Line 1

$init () { return { isSent: false } },-

Sent (email, sent) {-

email.isSent = true-

5

return email-

}-

}-

function loadEmail (context) {-

const messageStore = context.messageStore10

const sendCommand = context.sendCommand-

const streamName = `sendEmail-${sendCommand.data.emailId}`-

-

return messageStore-

.fetch(streamName, emailProjection)15

.then(email => {-

context.email = email-

-

return context-

})20

}-

-

module.exports = loadEmail-

loadEmail starts by pulling the messageStore and the sendCommand it uses out of
context, using that command to build the streamName where an existing email’s
state would be found if there is any. Then it fetches the email entity from the
messageStore, using the projection defined at line 1. This entity has two states,
sent and unsent, represented by isSent being true or false, respectively. If we
haven’t applied any messages, then it hasn’t been sent, so $init sets isSent to

Chapter 9. Adding an Email Component • 140

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/load-email.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

false. If we see a Sent event, then we set isSent to true. We attach the entity to
the context and return it.

The next step is where we check if we’ve already sent the email, defined here:

video-tutorials/src/components/send-email/ensure-email-has-not-been-sent.js
const AlreadySentError = require('./already-sent-error')
function ensureEmailHasNotBeenSent (context) {

if (context.email.isSent) {
throw new AlreadySentError()

}

return context
}

module.exports = ensureEmailHasNotBeenSent

It’s just a quick check to see if the isSent property on the registrationEmail entity
is true. If it is, we throw an AlreadySentError to signal that and break the Promise
chain, otherwise we continue right along.

Now that we know we haven’t already sent the email, we’re just gonna send it:

video-tutorials/src/components/send-email/send-email.js
function sendEmail (context) {Line 1

const justSendIt = context.justSendIt-

const sendCommand = context.sendCommand-

const systemSenderEmailAddress = context.systemSenderEmailAddress-

5

const email = {-

from: systemSenderEmailAddress,-

to: sendCommand.data.to,-

subject: sendCommand.data.subject,-

text: sendCommand.data.text,10

html: sendCommand.data.html-

}-

-

return justSendIt(email)-

.then(() => context)15

}-

-

module.exports = sendEmail-

Remember the justSendIt function we set up in this Component’s top-level
function on page 136? We grab it out of context along with the sendCommand that
we’re handling and the systemSenderEmailAddress, which is the address all our
emails will be sent from. At line 6 we assemble the email object that justSendIt
expects. It’s composed of the systemSenderEmailAddress and the data from sendCom-
mand. We then invoke justSendIt with that email object, returning the context when
we’re done sending it. It’s gonna be a good day.

report erratum • discuss

Sending the Email • 141

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/ensure-email-has-not-been-sent.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/send-email.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The next step is to record that we’ve “sent” the registration email:

video-tutorials/src/components/send-email/write-sent-event.js
function writeSentEvent (context) {

const sendCommand = context.sendCommand
const streamName = `sendEmail-${sendCommand.data.emailId}`
const event = {

id: uuid(),
type: 'Sent',
metadata: {
originStreamName: sendCommand.metadata.originStreamName,
traceId: sendCommand.metadata.traceId,
userId: sendCommand.metadata.userId

},
data: sendCommand.data

}

return context.messageStore.write(streamName, event)
.then(() => context)

}

module.exports = writeSentEvent

This function builds a Sent event. We discovered the need for this event on
page 134. We do some interesting metadata work here. We do the standard
chaining of traceId and userId found in the message we’re handling. But notice
this originStreamName property. What is that all about?

Well, send-email is a general-purpose Component in our system. We’ll modify the
identity Component to use send-email to send registration emails when users register
later in this chapter, but we could easily imagine other uses for sending email
in a system like Video Tutorials. As you’ll see on page 148, identity will subscribe
to send-email’s sendEmail streams, and it will need a way to know which events in
those streams occurred because of registration. It doesn’t care about emails
sent for other reasons.

That’s the purpose of originStreamName. Any component issuing a Send command
adds a reference to one of its own streams in this property. For example, if iden-
tity were processing a registration for user 88513bc7-f472-4494-9764-c845cc62bea5, that
user’s registration events would live in identity-88513bc7-f472-4494-9764-c845cc62bea5.
When identity writes the Send command to a sendEmail:command stream, it will set
the originStreamName on that command’s metadata to identity-88513bc7-f472-4494-9764-
c845cc62bea5. Our job in send-email is to propagate that originStreamName property
into the metadata of any events resulting from that command. Since we’re coding
that happy path right now, that means we put it into this Sent event.

With the event assembled, we then write it to the email’s stream. In the future,
if we ever reprocess the registration event, writing another Send command

Chapter 9. Adding an Email Component • 142

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/write-sent-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

with the same emailId, this Sent event is what will tell us that the email is already
out and that we shouldn’t send it again.

That concludes the happy path. Let’s revisit the Registered handler’s Promise
chain to deal with our errors:

video-tutorials/src/components/send-email/index.js
return Bluebird.resolve(context)

.then(loadEmail)

.then(ensureEmailHasNotBeenSent)

.then(sendEmail)

.then(writeSentEvent)
// If it's already sent, then we do a no-op
.catch(AlreadySentError, () => {})➤

.catch(➤

SendError,
err => writeFailedEvent(context, err)

)

The first thing we catch is the AlreadySentError. This handles the case where the
registration email was already sent. This isn’t an error per se, but we threw
it to use the mechanics of Promises and JavaScript to break out of our
pipeline, perform a no-op, and move on. However, if the actual act of sending
the email caused an error, that will come to our pipeline as a SendError. In this
case we want to record that sending the email failed, and we do so here:

video-tutorials/src/components/send-email/write-failed-event.js
function writeFailedEvent (context, err) {

const sendCommand = context.sendCommand
const streamName = `sendEmail-${sendCommand.data.emailId}`
const event = {

id: uuid(),
type: 'Failed',
metadata: {
originStreamName: sendCommand.metadata.originStreamName,
traceId: sendCommand.metadata.traceId,
userId: sendCommand.metadata.userId

},
data: {
...sendCommand.data,
reason: err.message

}
}

return context.messageStore.write(streamName, event)
.then(() => context)

}

module.exports = writeFailedEvent

report erratum • discuss

Sending the Email • 143

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/send-email/write-failed-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

This looks just like recording that it succeeded, except that we build a Failed
event instead of a Sent event. Notice that we chain through the originStreamName.
We also pass in the error’s message property as the reason so that we have a
record of what went wrong. Then we write the event to the email’s stream. With
failure events recorded, we could build admin tooling that would let us try to
send it again. Or perhaps we could add a handler for this message type to
implement an automatic retry (hint, hint).

Running the Component
Now that it’s written, let’s get this puppy actually running. Whenever we add
a new component to the system, we head to config.js. We have a little bit more
to do this time, since in addition to configuring the send-email Component, we
also need to configure the node-mailer transport:

video-tutorials/src/config.js
// ...Line 1

const createPickupTransport = require('nodemailer-pickup-transport')-

const createSendEmailComponent = require('./components/send-email')-

function createConfig ({ env }) {-

// ...5

const transport = createPickupTransport({ directory: env.emailDirectory })-

const sendEmailComponent = createSendEmailComponent({-

messageStore,-

systemSenderEmailAddress: env.systemSenderEmailAddress,-

transport10

})-

const components = [-

// ...-

sendEmailComponent,-

]15

return {-

// ...-

sendEmailComponent,-

}-

}20

-

module.exports = createConfig-

Can’t configure something if you don’t first require it, so at line 2 we require the
nodemailer-pickup-transport. Then at line 3 we require the Component.

Onto instantiation then, we first instantiate the transport at line 6. The pickup
transport needs to know which directory to write the .eml files to. This direc-
tory is relative to the project root, and we pull it in through the environment.
Line 7 then instantiates the Component, giving it the messageStore, systemSender
EmailAddress, and the transport we just configured. Like the env.emailDirectory that

Chapter 9. Adding an Email Component • 144

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

the transport uses, env.systemSenderEmailAddress also comes from the environment.
We’ll add those to env.js right after we finish with the configuration.

This is a Component, so we need to add it to the components array at line 14.
And then we add it to the return value at line 18.

Let’s get those environment variables set up now:

video-tutorials/src/env.js
module.exports = {

appName: requireFromEnv('APP_NAME'),
cookieSecret: requireFromEnv('COOKIE_SECRET'),
databaseUrl: requireFromEnv('DATABASE_URL'),
env: requireFromEnv('NODE_ENV'),
port: parseInt(requireFromEnv('PORT'), 10),
emailDirectory: requireFromEnv('EMAIL_DIRECTORY'),➤

systemSenderEmailAddress: requireFromEnv('SYSTEM_SENDER_EMAIL_ADDRESS'),➤

version: packageJson.version,
// ...
messageStoreConnectionString:

requireFromEnv('MESSAGE_STORE_CONNECTION_STRING')
}

Notice EMAIL_DIRECTORY and SYSTEM_SENDER_EMAIL_ADDRESS. These will end up on
our environment object as emailDirectory and systemSenderEmailAddress, respectively.
You’ll want to add them to .env.development and .env.test as well.

Boom. If you happen to be holding a microphone right now, feel free to drop it.

Assuming you’ve pulled down the code and installed the dependencies with
npm install, you can run the project with npm run start-dev-server. Navigate to local-
host:3000 in a browser and click through to register. You’ll then see a .eml file
for that registration in video-tutorials/tmp/email/development, assuming you haven’t
changed the email directory location.

Adding Email to the Registration Process
Next, we’ll teach the identity Component to send a welcome email when users
register. Back on page 114 you wrote Registered events in the identity Component.
We’ll use those events as the trigger to send a registration email. Yes, when
we’re done, identity will respond to its own messages. There is absolutely
nothing wrong with that.

We also need to introduce a new event owned by the identity Component. Since
we’re going to send emails in response to messages, we’ll need a way to project
an identity and know if the email has already been sent. To that end, we
introduce the RegistrationEmailSent event:

report erratum • discuss

Adding Email to the Registration Process • 145

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/env.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

{
"id": "2ea97206-10a4-46ac-aa4a-ba48e0cdd450",
"type": "RegistrationEmailSent",
"data": {

"userId": "e0c6e804-ae9e-4c9c-bd55-b0c049a03993",
"emailId": "e31ecf6f-8eb2-4b75-aafb-dd715d4b2f3d"

}
}

It records the userId of the identity and the emailId of the email that was sent. We
don’t need any additional information to know that the user’s registration
email has gone out.

The basic flow will be as follows:

identity

send-email

Send

sendEmail:command-abc

Sent

sendEmail-abc

identity-123

Registered

RegistratrionEmailSent

12

3

4
5

6

1. identity observes its own Registered event.

2. identity handles that Registered event by writing a Send command to a send
Email:command command stream.

3. send-email observes the Send command.

4. send-email handles that Send command by sending the email and writing a
Sent event a corresponding sendEmail event stream.

5. identity observes the Sent event.

6. identity handles the Sent event by writing a RegisteredEmailSent event to the
original identity stream.

Let’s make the changes that will get these emails sent. We’ll start by writing
a handler in identity to handle identity’s own Registered events:

Chapter 9. Adding an Email Component • 146

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/components/identity/index.js
function createIdentityEventHandlers ({ messageStore }) {

return {
Registered: event => {

const context = {
messageStore: messageStore,
event,
identityId: event.data.userId

}

return Bluebird.resolve(context)
.then(loadIdentity)
.then(ensureRegistrationEmailNotSent)
.then(renderRegistrationEmail)
.then(writeSendCommand)
.catch(AlreadySentRegistrationEmailError, () => {})

}
}

}

Standard fare. Build a context with the messageStore, event we’re handling, and
the identityId in question. That feeds into a Promise chain that starts with the
loadIdentity function you wrote on page 112 and that will attach the identity in
question to the context. Next, we do our idempotence check:

video-tutorials/src/components/identity/ensure-registration-email-not-sent.js
const AlreadySentRegistrationEmailError =

require('./already-sent-registration-email-error')
function ensureRegistrationEmailNotSent (context) {

if (context.identity.registrationEmailSent) {
throw new AlreadySentRegistrationEmailError()

}

return context
}

We check the registrationEmailSent property on the loaded identity and throw an
AlreadySentRegistrationError if it’s truthy. Of course, for that property to ever be
set, we have to add it to the projection in loadIdentity:

video-tutorials/src/components/identity/load-identity.js
const identityProjection = {

$init () {
return {
id: null,
email: null,
isRegistered: false,
registrationEmailSent: false➤

}
},
// ...

report erratum • discuss

Adding Email to the Registration Process • 147

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/ensure-registration-email-not-sent.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/load-identity.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

RegistrationEmailSent (identity) {➤

identity.registrationEmailSent = true➤
➤

return identity➤

}➤

If we encounter a RegistrationEmailSent message, then we set registrationEmailSent
to true.

If it wasn’t sent though, then we’ll write a Send command:

video-tutorials/src/components/identity/write-send-command.js
const uuidv4 = require('uuid/v4')❶
const uuidv5 = require('uuid/v5')

const uuidv5Namespace = '0c46e0b7-dfaf-443a-b150-053b67905cc2'❷
function writeSendCommand (context, err) {❸

const event = context.event
const identity = context.identity
const email = context.email

const emailId = uuidv5(identity.email, uuidv5Namespace)

const sendEmailCommand = {❹
id: uuidv4(),
type: 'Send',
metadata: {
originStreamName: `identity-${identity.id}`,
traceId: event.metadata.traceId,
userId: event.metadata.userId

},
data: {
emailId,
to: identity.email,
subject: email.subject,
text: email.text,
html: email.html

}
}
const streamName = `sendEmail:command-${emailId}`❺

return context.messageStore
.write(streamName, sendEmailCommand)
.then(() => context)

}

module.exports = writeSendCommand

❶ First off, we require functions to generate both v4 and v5 UUIDs. Version
5 UUIDs generate a UUID by hashing a piece of known data. This lets us
get a predictable UUID given, say, an email address.

Chapter 9. Adding an Email Component • 148

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/write-send-command.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❷ UUID v5s also require a namespace string, which we hardcode into
uuidv5Namespace.

❸ Next, we start writeSendCommand, pulling out of the context the bits that we
need. We then generate an emailId by turning identity.email into a UUID.

❹ Next, we build a command like any other command we’ve built with the
exception of the originStreamName. Earlier in this chapter on page 142 you
chained that bit of metadata through the send-email Component’s handlers.
Here is where the originStreamName, um, originates.

In just a bit we’re going to write handlers in the identity Component that
subscribe to send-email’s events. Because other components may also make
use of send-email, any client component needs to be able to tell which emails
it caused to be sent and which were caused by other components. The
originStreamName is that mechanism. We set that value to the same stream
that this identity’s events go in.

❺ We then build a streamName for the Send command and finally write it to
the Message Store.

This will of course require a subscription in the top-level function:

video-tutorials/src/components/identity/index.js
function build ({ messageStore }) {

// ...
const identityEventHandlers = createIdentityEventHandlers({ messageStore })
const identityEventSubscription = messageStore.createSubscription({

streamName: 'identity',
handlers: identityEventHandlers,
subscriberId: 'components:identity'

})
return {

identityCommandHandlers,
identityEventHandlers,➤

start
}

}

Instantiate the handlers and pass them to the subscription.

Recording Registration Emails
With the identityEventSubscription running, we’re sending Send commands to send-
email. It will send those emails and record events when it does so. We just
need to observe those Sent events and make a record of it in the corresponding

report erratum • discuss

Recording Registration Emails • 149

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

identity stream so that identity can know that the email was sent and that it
doesn’t have to worry about it anymore.

To that end, let’s write handlers to handle those Sent events:

video-tutorials/src/components/identity/index.js
function createSendEmailEventHandlers ({ messageStore }) {Line 1

return {-

Sent: event => {-

const originStreamName = event.metadata.originStreamName-

const identityId = streamNameToId(originStreamName)5

-

const context = {-

messageStore,-

event,-

identityId10

}-

-

return Bluebird.resolve(context)-

.then(loadIdentity)-

.then(ensureRegistrationEmailNotSent)15

.then(writeRegistrationEmailSentEvent)-

.catch(AlreadySentRegistrationEmailError, () => {})-

}-

}-

}20

First off, at line 4 we get the originStreamName out of the event’s metadata, and
use it to extract the identityId of the identity we’re working on. With that, we build
a context and start a Bluebird pipeline. The first two steps are loadIdentity and
ensureRegistrationEmailNotSent, which we’ve used before, most recently on page 145,
so no need to rehash those.

writeRegistrationEmailSentEvent continues the chain:

video-tutorials/src/components/identity/write-registration-email-sent-event.js
function writeRegistrationEmailSentEvent (context, err) {

const event = context.event

const registrationEmailSentEvent = {
id: uuid(),
type: 'RegistrationEmailSent',
metadata: {
traceId: event.metadata.traceId,
userId: event.metadata.userId

},
data: {
userId: context.identityId,
emailId: event.data.emailId

}
}

Chapter 9. Adding an Email Component • 150

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/write-registration-email-sent-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const identityStreamName = event.metadata.originStreamName

return context.messageStore
.write(identityStreamName, registrationEmailSentEvent)
.then(() => context)

}

module.exports = writeRegistrationEmailSentEvent

It builds the corresponding event and writes it to the stream name contained
in event.metadata.originStreamName.

At the very end of the pipeline we have a catch for AlreadySentRegistrationEmailErrors,
so that we can no-op if the work has already been done.

Next, we just need to set up the subscription for this handler:

video-tutorials/src/components/identity/index.js
function build ({ messageStore }) {

// ...
const sendEmailEventHandlers = createSendEmailEventHandlers({ messageStore })
const sendEmailEventSubscription = messageStore.createSubscription({

streamName: 'sendEmail',
handlers: sendEmailEventHandlers,
originStreamName: 'identity',
subscriberId: 'components:identity:sendEmailEvents'

})
return {

identityCommandHandlers,
identityEventHandlers,
sendEmailEventHandlers,➤

start
}

}

This subscription adds a new parameter, namely originStreamName. This may
be a shocker, but this parameter tells the subscription to only send messages
to the supplied handlers if the category of the metadata.originStreamName on the
messages matches the supplied originStreamName. Of course, this doesn’t actu-
ally exist in our Message Store code yet, so we’ll need to add it.

Making the Message Store Aware of Origin Streams
In code/video-tutorials/src/message-store/subscribe.js we wrote getNextBatchOfMessages which
retrieves the batches of messages in the category we’re subscribing to. For
subscriptions that have an originStreamName, we’ll further filter that query result
based on whether or not the messages have that originStreamName in their
metadata.

report erratum • discuss

Making the Message Store Aware of Origin Streams • 151

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

First the filtering function:

video-tutorials/src/message-store/subscribe.js
const category = require('./category')Line 1

function configureCreateSubscription ({ read, readLastMessage, write }) {-

// ...-

function filterOnOriginMatch (messages) {-

if (!originStreamName) {5

return messages-

}-

-

return messages.filter(message => {-

const originCategory =10

message.metadata && category(message.metadata.originStreamName)-

-

return originStreamName === originCategory-

})-

}15

}-

On line 4 we start the function filterOnOriginMatch. It sits inside the main closure
in this file because it needs access to the originStreamName parameter used when
setting up a subscription. It receives the list of messages to filter.

On line 5, if the subscription has no originStreamName, then there’s no filtering
to do, and we just return the array of messages as is. If there was an originStream-
Name, then we call messages.filter2. filter receives a function that will get called
for each message in messages, returning a new array containing only those mes-
sages that evaluate to truthy when passed through this second function.

How do we actually filter? Well, at this point in filterOnOriginMatch, we know that
the subscriber is interested in a particular originStreamName, otherwise we would
have already bailed. On line 10 we therefore get originCategory from each mes-
sage.metadata by first checking to see if the message has metadata, and then run-
ning message.metadata.originStreamName through a function named category which
extracts the category from a given stream name. We then return whether or
not the supplied originStreamName matches the originCategory we got from the
message on line 13. The category function is just a few lines:

video-tutorials/src/message-store/category.js
function category (streamName) {

// Double equals to catch null and undefined
if (streamName == null) {

return ''
}

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Chapter 9. Adding an Email Component • 152

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/subscribe.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/message-store/category.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return streamName.split('-')[0]
}

module.exports = category

First, if there is no streamName, then there is no category, so we just return the
empty string. However, if there is a streamName, we split it on - and take the
first segement. That is the definition of what a category is.

With this filtering in place, the Message Store tick function will now have only
messages that match the originStreamName we care about, and our component
handlers that so specify will be guaranteed to receive only messages they
caused to happen. And that also concludes our work to get registration emails
to our users.

Revisiting Idempotence
Hooray for sending emails! Before closing, let’s call out our idempotence
choice. This Component interacts with a third-party system that isn’t under
our control (the email provider), so now you can build Components that
interact with other third-party systems. This is one of the trickier parts of
microComponent architectures (indeed, any architecture) because it involves
state outside of our control. There is no way to guarantee that our system
will agree with an external system about the state of the world, but by
recording each step of our interaction with these external systems, we have
a better shot at debugging when things go wrong.

When recording those interactions, failure can occur at any point along the
chain. With our registration emails, we could “send” the email and crash
before recording that we sent it. Upon restart, we’d try to send it again. We
consulted with our business team to decide that sending it more than once
is better than not sending it at all.

In other cases, that would be a terrible plan. Imagine if we were charging
customer credit cards, for example. In that case, we’d want to write that we’re
attempting to charge the card before charging it, so that we’d never attempt
to charge it twice. Handling it not being charged at all we could handle with
admin tooling or manual intervention. Is that ideal? No. It sure beats the heck
out of double charges, though. We would be scoundrels to put our users
through that, and our payment provider would likely also drop us. Lose, lose.

report erratum • discuss

Revisiting Idempotence • 153

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Orchestrating Components vs. Choreographing
Components
Now, in this chapter you made changes to identity so that it could leverage the
functionality of the send-email Component by explicitly writing a command.
The explicit control of the process is called orchestration. You may have come
across the terms process manager and saga. These are both flavors of
orchestrating Components, and what you built here is an example of “process
manager.”

Orchestration is in contrast to a technique called choreography. Imagine that
instead of identity writing an explicit command to send-email that send-email had
observed the Registered event and just known to send the registration email.
That is like a group of dancers who each know their part to play without any
specific direction from a coordinating actor.

We’ll favor orchestration because it makes processes more explicit. For
example, we can look in one place and know that as part of registration an
email is supposed to go out. Had we choreographed this interaction, we’d
have to look into multiple Components to see the complete registration process.

What You’ve Done So Far
Whew! You just added a Component that, um, actually does something. This
is great! In the process, you also got experience working with the business
team when considering idempotence trade-offs.

You’ve also made it so a Component can take advantage of the capabilities
offered by another Component. One of the main points of this architecture is
to be able to compose functionality from a collection of components, something
you did in making identity leverage send-email to get registration emails out to
users. Check out Eventide’s documentation for additional insight into how
this worked.3

But why stop here? You saw how nodemailer works. Could you configure it with
a transport that would actually send an email? SendGrid is a fine option for
that, and they wrote documentation on how to use nodemailer with their prod-
uct.4 There’s also a Mailgun transport,5 if that’s your style. And if you prefer
something else, there’s probably a transport for it. Keep in mind that other

3. http://docs.eventide-project.org/user-guide/messages-and-message-data/metadata.html
4. https://sendgrid.com/blog/sending-email-nodemailer-sendgrid/
5. https://github.com/orliesaurus/nodemailer-mailgun-transport

Chapter 9. Adding an Email Component • 154

report erratum • discuss

http://docs.eventide-project.org/user-guide/messages-and-message-data/metadata.html
https://sendgrid.com/blog/sending-email-nodemailer-sendgrid/
https://github.com/orliesaurus/nodemailer-mailgun-transport
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

transports will need other configuration information, so you’ll need to get
those settings into the Component or to wherever you set up the transport.

Now, remember how if the registration email fails to send, we just yawn and
move on? Could you build some retries into the system? As a hint, you might
consider adding a handler for RegistrationEmailFailed events. You’d probably want
to limit the number of send attempts, so you’d need to know how many
attempts were made. Can you add the number of failures to the projection in
code/video-tutorials/src/components/send-email/load-registration-email.js? I bet you can.

Next up, you may be familiar with the concept of background jobs in web apps.
There are certain things you don’t want to do during an HTTP request/response
cycle because they take too long. So you receive the information about what
needs to be done and pass it off to some worker queue. How do we do some-
thing similar now that we’re dealing with Components? Stay tuned for the
next chapter, where you’ll tackle this exact problem in the context of
transcoding your users’ videos.

report erratum • discuss

What You’ve Done So Far • 155

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 10

Wrong models cause massive accidental complexity.

 ➤ Greg Young

Performing Background Jobs
with Microservices

Have you ever ordered food over the telephone? Maybe you called a pizza delivery
place that didn’t yet have online ordering? Did it go something like this?

You phoned the location, maybe asking what they had on special. You ended
up making a selection and getting an idea of when it would be delivered. Then
you stayed on the phone, tying up the line so that no one else could call in
until your pizza was delivered and ready to go into your belly.

Oh wait, that doesn’t sound familiar? Well, good. Just like with this pizza-
delivery scenario, there are certain things web applications do that have no
business being completed during a request/response cycle. They would make
that cycle take too long and degrade user experience. You’ve seen one example
of that so far with sending registration emails. That likely is going to connect
to a third-party API to actually send the message, and there’s about one thing
you can safely rely on when it comes to networks—they will fail from time to
time. They are subject to the physical world. If you haven’t accounted for that
in your system, these external failures will become internal failures.

In this chapter we’re going to look at how long-running processes are modeled
in an autonomous, microservices-based system. SPOILER ALERT: We already
have all the tools we need. By the end of this chapter, we’ll build a video
publishing Component that does post-processing on videos that users upload.
This post-processing will take time to complete and kick off status updates
as it goes along. In the process, we’ll see a rather interesting idempotence
trade-off, on page 170, where sometimes it’s okay to accept duplicate work.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Accidental Complexity
If you’ve moved operations out of the request/response cycle before, you’re
likely familiar with terms like “delayed jobs,” “background jobs,” or “queues.”
There are libraries in various programming languages to make working with
these concepts fairly straightforward.

If you take anything from this book, I hope it is a curiosity to move beyond
specific tools and implementations into the ideas behind them. That includes
Video Tutorials. There’s a world of autonomous microservices that’s far bigger
than this book. So let’s pose a question: what exactly is a background job?
Well, a background job simply does some computing work in an asynchronous
manner. It probably reports status along the way. It may or may not require
setting up a new piece of infrastructure. DelayedJob1 in the Ruby world just
uses your database to track jobs, whereas node-resque2 requires Redis or
Sidekiq.

Hmmm…asynchronous work that reports status along the way. Does that
sound awfully familiar?

Greg Young once asked, “What is a queue but a degenerate form of a stream?”
Said another way, what does a queue offer that a stream does not? Streams
are already the fundamental building block of the work we’re doing.

Let’s pretend that the RantAboutQueuesDelivered event didn’t get written, and so
the projection that would have prevented it appearing a second time didn’t
prevent it because this point is worth making over and over. Doing so-called
“background jobs” requires no additional setup because background jobs are
just a degenerate form of managing asynchronous work. Because we’ve chosen
the right model for microservices, we’re not left with the accidental complexity
Greg Young warns against.3 We don’t have to set up a one-off worker queue
system. This type of work just uses the primitive constructs an asynchronous,
message-based system already provides.

You’re going to see this in the context of sending emails and publishing videos,
which will involve transcoding those videos. We’ve already covered the use
case for sending emails. As for publishing videos, a Video Tutorials site sans
videos is, um, well, we’re not marketing experts, but if we’re to trust our
business team, they’re telling us this is a rather important feature of the site.

1. https://github.com/collectiveidea/delayed_job
2. https://github.com/taskrabbit/node-resque
3. https://www.youtube.com/watch?v=hv2dKtPq0ME&t=1064

Chapter 10. Performing Background Jobs with Microservices • 158

report erratum • discuss

https://github.com/collectiveidea/delayed_job
https://github.com/taskrabbit/node-resque
https://www.youtube.com/watch?v=hv2dKtPq0ME&t=1064
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

We need to allow content creators to upload their content. Once they’ve
uploaded videos, we need to transcode them into formats suitable for
streaming. Depending on the size of these videos, a transcoding job might
take seconds to minutes. While that is considerably less time than it takes
to get a pizza delivered, our tolerance for leaving an HTTP connection open
is also considerably less. Let’s tuck in.

“I Heard I Need to Use Kafka or RabbitMQ to Do Background
Jobs. Do I?”
No.

“Okay, Seriously, Don’t I Need to Use Kafka or RabbitMQ
to Do Background Jobs?”
Seriously, no. Yes, this is getting repeated ad nauseam, but you’ve already
built every construct you need to perform long-running processes outside of
the request/response cycle. If you’re still in doubt, just roll with it for the rest
of this chapter.

Use Case #1: Sending Emails
Okay, this is a petty move on your humble author’s part, but you’ve already
moved sending emails out of the request/response cycle in Chapter 9, Adding
an Email Component, on page 133. There isn’t anything to add. But if you are
one of the doubters, go back and read through that chapter to see how the
Message Store has already provided everything you needed.

Use Case #2: Transcoding Videos
As we said earlier, content creators will upload videos, and then we’ll transcode
them into various formats that play nicely with our users’ devices and internet
connections. As always, before starting to build features, let’s discover the
messages we need.

The publishing flow will be something like:

isPublishedVideoPublishedPublishVideo

The Creators Portal will have UI to simulate uploading videos directly to
Amazon’s S3 offering. Once the “upload” is complete, the UI will instruct the

report erratum • discuss

Use Case #1: Sending Emails • 159

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

server to publish the video. This suggests a PublishVideo command that commu-
nicates who owns the video and where to find its source file. We’ll only allow
authenticated users to do this so that we don’t end up being the world’s
Dropbox substitute.

Joe asks:

Why Are We Only Simulating Uploads?
That’s a fair question. It’s to avoid getting lost dealing with a complicated JavaScript
client and the intricacies of configuring an AWS account to handle uploads. We need
to stay focused on microservices, and simulating the upload to S3 won’t change
anything about the microservices aspect of our project. You’ll see exactly where you’d
need to change things to properly interact with S3.

We’ll do something similar with the transcoding process itself, but the flow through
the microservices won’t be changed. You would be able to swap in a Component that
actually does transcode videos without changing any of the rest of the flow.

In fact, once you see the whole flow, wouldn’t that be a great exercise...

Here is an example PublishVideo command:

{
"id": "f72ee7ab-066f-403c-b4b6-5f233fd34c81",
"type": "PublishVideo",
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

This command makes the distinction between the user issuing it, userId, and
the owner of the video, ownerId. We may have an admin screen where admins
need to move a video along the publishing flow. sourceUri tracks where the
uploaded video file lives, and id is the video’s identifier.

You may have noticed that this command transmits no name or description
of the video. We’ll handle naming videos in the next chapter, Chapter 11,
Building Async-Aware User Interfaces, on page 173.

Something will observe that command, and said something will publish the
video by transcoding it and then writing a VideoPublished event. Again we see a
command/event pair where the command’s type is the imperative form of the
event’s past-tense type. Here is an example VideoPublished event:

Chapter 10. Performing Background Jobs with Microservices • 160

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

{
"id": "d260b63a-8195-4488-b5e4-8884ac792c61",
"type": "VideoPublished",
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"transcodedUri": "https://someswankyurl.com/"
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

It copies the id, ownerId, and sourceUri from the command. It also adds the
transcodedUri, letting us know where the transcoded file was stored. Writing this
event is when the video becomes officially “published.”

The last event we need to consider is when publishing fails. Our system runs on
hardware that exists in the physical world, and things can happen and frequently
do there. This gives us the VideoPublishingFailed event, and here is an example:

{
"id": "3ed7c799-7a74-4e98-9759-013ef031ac10",
"type": "VideoPublishingFailed",
"data": {

"reason": "Invalid format",
"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

This event copies over the same data from the command as the success event,
adding reason why publishing failed. It’s unlikely that we’d surface that reason
word-for-word to our users, but it does provide debugging information. If you
started seeing the same reason over and over again, you’d know where to first
direct work to make the publishing process more robust.

Now, there are rumors that the business team is going to require multiple
transcoding formats, so we’ll want to make sure that whatever we choose now
doesn’t make adapting to that requirement difficult.

To transcode into multiple formats we could instead choose to make our
transcodedUri property an array or we could write one of these events for each
target format. Our events are supposed to represent what happens in our
domain, and from that perspective using separate events for each target format
makes more sense. We don’t have to worry about supporting multiple targets
right now, but we’ve chosen an event structure that will adapt to it well when
and if the requirement hits.

report erratum • discuss

Use Case #2: Transcoding Videos • 161

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

In any case, these messages all logically fit together, and we’ll write a video-
publishing Component to own them and perform the work of publishing our
creators’ videos. You can see the full write-up of the messages and process
in video-tutorials/src/components/video-publishing/contract.md.

Describing the Creators Portal
The Creators Portal is an Application that writes commands to the Message
Store. We’re not going to build it here because, uh, let’s say our development
efforts are going so well and we’re showing so much value to our company
and investors that they’ve brought on another team to work on the solid
foundation we’ve put down. This other team will build the Creators Portal,
but they’re going to have questions for you since you designed the message
contract. You’ll need to advise them.

You can do this. You’ve built a few applications already, so think through the
contract we just developed. Would you have the Creators Portal directly receive
the video uploads? Would it have users upload directly to something like
Amazon’s S3 and then just have the browser UI call in after that happened?
You could even pretend to be the other team and take a crack at writing the
Creators Portal on your own.

If you get stuck or flat out would rather twiddle your thumbs, the book’s code
does have a fully functioning solution in code/video-tutorials/src/app/creators-portal.
Its job is to respond to user stimulus and issue commands to the video pub-
lishing Component:

If you do want to give it a shot, see the screenshot on page 163 for some
inspiration.

On the left is a list of videos the current user has uploaded, and on the right
is the interface for uploading a new video. Don’t forget to wire it up in code/video-
tutorials/src/config.js and code/video-tutorials/src/app/express/mount-routes.js if you choose
to give it a go.

Chapter 10. Performing Background Jobs with Microservices • 162

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Aggregating Is Also for Other Teams
That other team is also going to build the Aggregator that populates the View
Data the Creators Portal uses. Again, there is a working reference implemen-
tation in code/video-tutorials/src/aggregators/creators-videos.js with View Data defined
in code/video-tutorials/migrations/20181013180427_create_creators-portal-videos.js, but you
don’t really need to know that because you have a message contract. You’re
about to write the Component backing the message contract from before, and
we’ve all agreed to communicate through that contract rather than through
each other’s internals. Once the contract is in place, it really doesn’t matter
what order the individual pieces get developed in.

As it turns out, though, we’re going to build the video publishing Component now.

Building the Video Publishing Component
Let’s situate the video-publishing Component in the architecture as shown in the
figure on page 164.

It’s one of the system’s lightning bolts, and it will read messages from and
write messages to the Message Store. With this Component we get to the heart
of “background jobs” in a microservices world. Remember that in a service-
based architecture, communication with Components happens via asyn-
chronous messages—nothing changes when you’re doing a so-called back-
ground job. Everything already is a “background” job.

report erratum • discuss

Aggregating Is Also for Other Teams • 163

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Components

Message
Store

Start with the top-level function:

video-tutorials/src/components/video-publishing/index.js
function build ({ messageStore }) {

const handlers = createHandlers({ messageStore })
const subscription = messageStore.createSubscription({

streamName: 'videoPublishing:command',
handlers: handlers,
subscriberId: `video-publishing`

})

function start () {
subscription.start()

}

return {
handlers,
start

}
}

Standard fare for an autonomous component. Note that we’re subscribing to
the videoPublishing:command category stream. With this set up, we’ll first dive into
the handlers.

Handling PublishVideo Commands
The Creators Portal application wrote a PublishVideo command to signal that a
user wants to publish a video. It doesn’t know precisely what will respond to
it, or if anything will at all, nor does it care. Its job was to issue the command,
and it is the job of the video-publishing Component to handle it:

Chapter 10. Performing Background Jobs with Microservices • 164

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/components/video-publishing/index.js
const Bluebird = require('bluebird')Line 1

-

const AlreadyPublishedError = require('./already-published-error')-

const ensurePublishingNotAttempted =-

require('./ensure-publishing-not-attempted')5

const loadVideo = require('./load-video')-

const transcodeVideo = require('./transcode-video')-

const writeVideoPublishedEvent = require('./write-video-published-event')-

const writeVideoPublishingFailedEvent =-

require('./write-video-publishing-failed-event')10

function createHandlers ({ messageStore }) {-

return {-

PublishVideo: command => {-

const context = {-

command: command,15

messageStore: messageStore-

}-

-

return (-

Bluebird.resolve(context)20

.then(loadVideo)-

.then(ensurePublishingNotAttempted)-

.then(transcodeVideo)-

.then(writeVideoPublishedEvent)-

.catch(AlreadyPublishedError, () => {})25

.catch(err => writeVideoPublishingFailedEvent(err, context))-

)-

}-

}-

}30

The first step is to set up a context at line 14 to flow through our processing
pipeline which we start on line 20. The context just contains the command and
the messageStore.

Now, the basic flow of any Component’s handlers, whether we’re transcoding
videos or sending emails, is:

1. Load and project the current state of the entity we’re modifying, on page
166 and on page 165.

2. Make the handler idempotent, on page 167.
3. Do the thing we’re supposed to do, on page 168.
4. Write the events to show we’ve done the thing, also on page 168.

First, load the entity we’re acting on:

video-tutorials/src/components/video-publishing/load-video.js
const videoPublishingProjection = require('./video-publishing-projection')
function loadVideo (context) {

report erratum • discuss

Building the Video Publishing Component • 165

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/load-video.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const messageStore = context.messageStore
const command = context.command
const videoStreamName = `videoPublishing-${command.data.videoId}`

return messageStore
.fetch(videoStreamName, videoPublishingProjection)
.then(video => {
context.video = video

return context
})

}

module.exports = loadVideo

This function grabs the messageStore and command out of the context. It then builds
the name of the stream the video entity is in and stuffs that into videoStreamName.
With that stream name, it calls messageStore.fetch, passing videoStreamName and
videoPublishingProjection to get the current state of the video. Once it gets the
projected video, it stuffs it into context. We still have to write that projection:

video-tutorials/src/components/video-publishing/video-publishing-projection.js
const videoPublishingProjection = {Line 1

$init () {-

return {-

id: null,-

publishingAttempted: false,5

sourceUri: null,-

transcodedUri: null,-

}-

},-

VideoPublished (video, videoPublished) {10

video.id = videoPublished.data.videoId-

video.publishingAttempted = true-

video.ownerId = videoPublished.data.ownerId-

video.sourceUri = videoPublished.data.sourceUri-

video.transcodedUri = videoPublished.data.transcodedUri15

-

return video-

},-

-

VideoPublishingFailed (video, videoPublishingFailed) {20

video.id = videoPublishingFailed.data.videoId-

video.publishingAttempted = true-

video.ownerId = videoPublishingFailed.data.ownerId-

video.sourceUri = videoPublishingFailed.data.sourceUri-

25

return video-

}-

}-

-

module.exports = videoPublishingProjection30

Chapter 10. Performing Background Jobs with Microservices • 166

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/video-publishing-projection.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The state of an entity is stored in a stream of events, and projections are how
you turn a linear log of history into a shape you can work with right now.
You built the core projection mechanism in Chapter 7, Implementing Your
First Component, on page 105, but for a brief refresher, you implemented a
projection as an object that takes an $init property whose value is a function
returning the entity’s state before you’ve applied any events to it. Then you
reduce the list of events in the stream, checking the projection object to see if
it has a key matching each event’s type. If the projection has a corresponding
handler, you call that function, passing it the entity’s state up to that point
and the event to apply. It returns the entity with that event applied, and you
move on to the next event if there are more. If there are no more, then that
return value is the state of the entity.

This projection, too, starts with an $init function at line 2. A video with no
events has no id, publishingAttempted is false, and there is neither a sourceUri nor
a trasncodedUri.

The publishing process so far has two state-changing events, VideoPublished
and VideoPublishingFailed, which we handle at lines 10 and 20. For both types we
extract the videoId, ownerId, and sourceUri from the event payload, and we set
publishingAttempted to true. With VideoPublished events we also extract transcodedUri.

With the video projected and loaded into context, we head back to our pipeline
on page 165, where the next step, ensurePublishingNotAttempted, makes this handler
idempotent:

video-tutorials/src/components/video-publishing/ensure-publishing-not-attempted.js
const AlreadyPublishedError = require('./already-published-error')
function ensurePublishingNotAttempted (context) {

const { video } = context

if (video.publishingAttempted) {
throw new AlreadyPublishedError()

}

return context
}

module.exports = ensurePublishingNotAttempted

You wrote a similar check earlier on page 141 when we were making sure send-
email hadn’t already sent a given email. From the point of view of a microser-
vices architecture, publishing a video isn’t really any different from sending
an email. It’s all the same building blocks for both features of the system.
When sending emails, when transcoding videos, when moving funds around,
whenever modifying an entity, our message consumers make sure we’re not
processing the same messages twice.

report erratum • discuss

Building the Video Publishing Component • 167

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/ensure-publishing-not-attempted.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

So, if the video in context has a publishingAttempted of true, then we throw an
AlreadyPublishedError. If not, just return context.

The next step in our pipeline on page 165 is to “transcode” the video:

video-tutorials/src/components/video-publishing/transcode-video.js
const FAKE_TRANSCODING_DESTINATION =Line 1

'https://www.youtube.com/watch?v=GI_P3UtZXAA'-

function transcodeVideo (context) {-

console.log('We totally have a video transcoder installed that we are')-

console.log('totally calling in this function. If we did not have such')5

console.log('an awesome one installed locally, we could call into a')-

console.log('3rd-party API here instead.')-

-

const { video } = context-

context.transcodedUri = FAKE_TRANSCODING_DESTINATION10

console.log(`Transcode ${video.sourceUri} to ${context.transcodedUri}`)-

-

return context-

}-

15

module.exports = transcodeVideo-

The current implementation of this function contains a fair amount of hand
waving. Remember when Joe asked about all the simulating on page 160, and
we said that we were going to simulate the actual transcoding to keep the
focus on the microservices architecture? That’s why this function currently
just shows some text assuring us that this is where the transcoding would
happen. It would be a great exercise to flesh this out to and actually transcode
your videos here. A few options are ffmpeg4 and Zencoder,5 but diving into
either is beyond the scope of this book. You could just replace the console.log
statements with the actual implementation code.

The only real bit of work we do here is at line 10 where we attach the location
where the “transcoded” video is “stored.”

We’re at the final step of the golden path we wrote on page 165. With all the
actual work of publishing done, now it’s time to record that we did the work
in writeVideoPublishedEvent:

video-tutorials/src/components/video-publishing/write-video-published-event.js
function writeVideoPublishedEvent (context) {

const command = context.command
const messageStore = context.messageStore

4. https://www.ffmpeg.org/
5. https://zencoder.com

Chapter 10. Performing Background Jobs with Microservices • 168

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/transcode-video.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/write-video-published-event.js
https://www.ffmpeg.org/
https://zencoder.com
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const event = {
id: uuid(),
type: 'VideoPublished',
metadata: {
traceId: command.metadata.traceId,
userId: command.metadata.userId

},
data: {
ownerId: command.data.ownerId,
sourceUri: command.data.sourceUri,
transcodedUri: context.transcodedUri,
videoId: command.data.videoId

}
}
const streamName = `videoPublishing-${command.data.videoId}`

return messageStore.write(streamName, event)
.then(() => context)

}

module.exports = writeVideoPublishedEvent

This is a typical write-X-event function. In this case you build a VideoPublished
event, copying the data from the command in context. We also get the transcodedUri
that the transcodeVideo function attached and put all of these values into our
event, honoring our contract in code/video-tutorials/src/components/video-publishing/con-
tract.md. We build a streamName to write to, and then call messageStore.write to
write the event.

Congrats—you’ve just published videos. You’ve successfully published videos
without so-called background jobs, and learned how a microservices architec-
ture makes this kind of work feel native. And these transcoding jobs will
always work just like we have planned here.

Except when they don’t. Because, sometimes, they won’t. That’s why at the
end of the pipeline on page 165 we have these two lines:

video-tutorials/src/components/video-publishing/index.js
.catch(AlreadyPublishedError, () => {})
.catch(err => writeVideoPublishingFailedEvent(err, context))

)

The first catches the AlreadyPublishedErrors that ensureVideoIsNotPublished will throw
if the video has already been published. With the next we catch any other type
of error and call writeVideoPublishingFailedEvent:

video-tutorials/src/components/video-publishing/write-video-publishing-failed-event.js
function writeVideoPublishingFailedEvent (err, context) {

const command = context.command
const messageStore = context.messageStore

report erratum • discuss

Building the Video Publishing Component • 169

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/write-video-publishing-failed-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const transcodingFailedEvent = {
id: uuid(),
type: 'VideoPublishingFailed',
metadata: {
traceId: command.metadata.traceId,
userId: command.metadata.userId

},
data: {
ownerId: command.data.ownerId,
sourceUri: command.data.sourceUri,
videoId: command.data.videoId,
reason: err.message

}
}
const streamName = `videoPublishing-${command.data.videoId}`

return messageStore.write(streamName, transcodingFailedEvent)
.then(() => context)

}

module.exports = writeVideoPublishingFailedEvent

Like the other writeX functions, this one grabs the data it cares about out of
the context and builds its event. In this case that’s a VideoTranscodingFailed event.
In addition to the videoId, ownerId, and sourceUri, this event type takes a reason,
and the reason we’ll give for the failure is the message we got from err. Then
we write the event to the video’s streamName. If something goes wrong, we’ll have
some excellent debuggable state. These failure events could also be used to
retry transcoding the video if that requirement came along. That would require
modifying the video publishing projection which sets publishingAttempted to true
even in the case of failure.

In any case, the video-publishing Component is wired into the rest of the system
in the same way that everything else is wired in. You can inspect that in
code/video-tutorials/src/config.js, but we won’t go through it here.

But that’s a wrap on publishing, so let’s reason through our choice for how
to make this handler idempotent.

Accepting Potential Duplication
If you had an uneasy feeling as you went through how we handled idempotence
here, that’s awesome that you’re developing a sense for it. Before publishing
the video, we checked to see if the video was already done. We only have a
single video-publishing instance, so we don’t have to worry about two or more
instances competing with one another. However, we could very well transcode
the video and get restarted due to deployment or crash before writing the

Chapter 10. Performing Background Jobs with Microservices • 170

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

VideoPublished event. When it restarts, it’ll see the PublishVideo command and do
it all over again.

Transcoding videos is cheap, and we absolutely cannot accept failing to
transcode the videos—they don’t go out to our viewers if they don’t get
transcoded. Also, the destination of where we’ll put the result of the duplicate
work won’t change, so we won’t end up with orphaned files. After consulting
with the business team (which we must do to answer questions like this!),
we all agree that it’s okay to just let the duplicate work happen.

To recap, when deciding how to make a handler that executes a long-running
process like video transcoding idempotent, we have to ask whether it’s worse to
do the thing zero times or do them more than once. In the case of transcoding
our videos prior to publishing, we discovered that it would be worse to not
transcode the video at all than it would be to transcode it twice. So we chose
an idempotence strategy that may duplicate work. We accept that.

What You’ve Done So Far
Wow! You just built a video publishing system. More importantly, this was
the classic sort of “background job” you may have encountered in your days
as a purveyor of monoliths, where making it happen probably required some
sort of one-off solution and flow that was different from everything else your
system did. You just wrote such a process without having to pull in any new
concepts. Whenever you’re faced with incorporating a long-running process
in a services architecture, you now have the machinery and understanding
to do so.

Isn’t it remarkable that once we had our message contract, we were able to
let the other team build the UI and Aggregator while we focused on the
Component? They weren’t waiting on us!

To take your learning further, try getting the Component to actually transcode
the videos. If you’re particularly ambitious, you could actually upload files to
S3 and pull them down when transcoding, or you could modify the command
to write a local path that you can work on. I can’t wait to see what you come
up with!

Now, if you were to fire up the project and upload a video, you’ll notice a, uh,
sub-optimal feature of the system right now. Every video is named “Untitled.”
This isn’t ready for primetime yet, so in the next chapter you’ll give our creators
a way to name their videos. In doing so, you’ll see an aspect that our architec-
ture makes more difficult—how do you create a pleasant user experience
when the result of what they’re doing isn’t immediately available?

report erratum • discuss

What You’ve Done So Far • 171

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 11

Building Async-Aware User Interfaces
Have you ever been on a very large boat? Maybe an aircraft carrier or a cruise
ship? If you have, or if you’ve seen pictures of one, you may have noticed that
there are watertight doors interspersed throughout. Doors like that surely
increase the cost of building such a vessel, since it would require less metal
without them. So why bother?

Well, preventing water from moving from one part of the ship to another is a
winning strategy if one part of the ship springs a leak. It could make the dif-
ference between a nuisance of a repair bill and the entire thing sinking.

The Video Tutorials site you’re building would likely take less overall code if
you built it as a monolith. In fact, a microservices-based system in general
is going to have more moving parts than an MVC monolith.

Suppose that it took ten complexity points to be build a given monolith. It
might take fifteen to build an equivalent microservices-based system. But
when you’re building the microservices-based system, you only have to hold
two points of complexity in your mind at any given time. For the monolith,
you have to hold eight points of complexity in your mind at any given time
because there are no hard, fast doors sealing one portion off from another.
The message contract gives you that kind of separation, and that’s what keeps
you more productive in a services system in the long run.

In this chapter, we’re going to examine an aspect of our system that is more
complex because of having a microservices architecture—building a UI in an
async world. How do you give the user a seamless experience when the results
of the actions they take are not immediately available? We’ll discuss a couple
of patterns, and you’ll code one of them in the context enabling your users
to name their videos.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Defining Video Metadata Messages
We introduced the Creators Portal in Chapter 10, Performing Background
Jobs with Microservices, on page 157. Our other team built the first version,
and we’ll augment it, allowing users to see their uploaded videos via an
interface like the following:

Let’s open the Creators Portal application and see how the other team set up
the application:

video-tutorials/src/app/creators-portal/index.js
function createCreatorsPortal ({ db, messageStore }) {Line 1

const queries = createQueries({ db })-

const actions = createActions({ messageStore, queries })-

const handlers = createHandlers({ actions, queries })-

5

const router = express.Router()-

router-

.route('/publish-video')-

.post(bodyParser.json(), handlers.handlePublishVideo)-

router.route('/videos/:id').get(handlers.handleShowVideo)10

router.route('/').get(handlers.handleDashboard)-

-

return { handlers, router }-

}-

15

module.exports = createCreatorsPortal-

Chapter 11. Building Async-Aware User Interfaces • 174

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The other team built this application following the pattern we’ve used for all
our applications. It receives dependencies and sets up queries, actions, and
handlers. It builds a router and adds routes for publishing a video (line 9),
showing an individual video (line 10), and displaying the Creators Portal
dashboard (line 11). There are handlers for each of those routes, and be sure
to check them out when you can.

Our business team is saying that we’ll get more engagement with the site if
the videos have names other than “Untitled,” and that seems reasonable. So
we need to let our users name their videos. Maybe even rename them. That
sounds like another state transition for videos, so we need to modify the video
publishing Component to provide this state transition as well as add an
Aggregator to reflect the change back into appropriate View Data. In the pro-
cess, you’ll even see on page 178 a use for building different View Data struc-
tures from the same events. Surely, such power isn’t meant for mere mortals,
but here we are, so let’s get to it.

First of all, new state transitions means new messages. The piece of state
we’ll record is that a video got named. This suggests a VideoNamed event:

{
"id": "c022a493-4784-4e54-84a1-df5e4e08553a",
"type": "VideoNamed",
"data": {

"name": "Prod Bugs Hate This Guy: 42 Things You Didn't Know About JS"
}

}

It holds the name the creator supplied.

Now, Components own their data, and the first rule of user input is to never
trust user input. It’s quite possible for users to give us names we don’t want
to allow. For example, a blank name isn’t much more useful than just naming
a video “Untitled.” We discussed validating eventually consistent data on page
99, when we implemented user registration. In that chapter we had the
Application layer catch malformed email addresses. We did that because what
makes a string a valid email address is not a unique property of our sys-
tem—as awesome as Video Tutorials is, it did not invent email. However, it
is our system declaring that users can’t name a video with a blank name.

In this chapter you’ll use a Component to validate input on page 181. The
Application layer will let everything through. The catch is that everything a
Component does is asynchronous. If we wait for the Component to validate
a video’s name, we won’t know during the request/response cycle if the

report erratum • discuss

Defining Video Metadata Messages • 175

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

naming attempt succeeded. This means the Component will need an event
to signal naming failures. That leads us to the VideoNameRejected event:

{
"id": "19f71d45-eb38-4fde-9ed9-d1565ef61a2f",
"type": "VideoNameRejected",
"data": {

"name": ""
"reason": "ValidationError**{ \"name\": [\"Can't be blank\"]}"

}
}

It captures the reason why the video naming didn’t go through.

Then we need a command to request that the Component name the video.
Let’s call it NameVideo:

{
"id": "b8723a39-f75a-41cb-a618-c4634e08da56",
"type": "NameVideo",
"data": {

"videoId": "f94ce176-4a31-47e3-9593-c4ed4ee6ac84",
"name": "Prod Bugs Hate This Guy: 42 Things You Didn't Know About JS"

}
}

This one needs to know which video is supposed to get a name as well as
what that name is. We allow the owners of videos to submit this command.
If we ever have admins in our system, they’ll be able to as well.

Responding to Users When the Response Isn’t
Immediately Available
We head back to the Creators Portal application to put these messages to
use. The individual video screen has two forms on it, one for naming the video
and one for describing it. Why two forms? We don’t want to present users
with an HTTP form sitting on top of a database table. They’re not here to edit
a video—they’re here to name a video. This is an example of a task-based UI,1

a UI geared toward achieving specific ends rather than raw editing.

That said, we’ll only cover naming the videos, since describing them is an
exercise at the end of the chapter. The name appears in a text box that submits
back to our server, ending up at the handleNameVideo handler:

1. https://cqrs.wordpress.com/documents/task-based-ui/

Chapter 11. Building Async-Aware User Interfaces • 176

report erratum • discuss

https://cqrs.wordpress.com/documents/task-based-ui/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/app/creators-portal/index.js
function createHandlers ({ actions, queries }) {

function handleNameVideo (req, res, next) {
const videoId = req.params.id
const name = req.body.name

actions
.nameVideo(req.context, videoId, name)
.then(() =>

res.redirect(
`/creators-portal/video-operations/${req.context.traceId}`

)
)
.catch(next)

}
return {

handleNameVideo,
}

}

Like all good HTTP handlers, it grabs the data it needs out of the incoming
request and passes it to the business logic. In this case we need the videoId, found
at req.params.id, the name the user supplied, which is found at req.body.name, and
the request context. It passes these pieces to actions.nameVideo:

video-tutorials/src/app/creators-portal/index.js
function createActions ({ messageStore, queries }) {

// ...
function nameVideo (context, videoId, name) {

const nameVideoCommand = {
id: uuid(),
type: 'NameVideo',
metadata: {

traceId: context.traceId,
userId: context.userId

},
data: {

name,
videoId

}
}
const streamName = `videoPublishing:command-${videoId}`

return messageStore.write(streamName, nameVideoCommand)
}
return {

// ...
nameVideo

}
}

report erratum • discuss

Responding to Users When the Response Isn’t Immediately Available • 177

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

actions.nameVideo’s job is to take user input and turn it into a NameVideo command
that the video publishing Component will process. So it does just that, writing
that command to the video’s command stream.

Now, we’ve issued a command into the wild that we want this video to be
renamed, and we’re in the middle of an HTTP request. We don’t know when
that command is going to get processed. Truth be told, we don’t even know
if it’s going to get processed. That isn’t our concern here. Our concern is to
issue the command. But what about our users? What do we show them?

Every model has its strengths and weaknesses, including evented, autonomous
microComponents. This type of user interaction is where our architecture is
more difficult to work with than a monolith. Why? Everything is asynchronous.
We don’t have the familiar world of issuing an update query to the database
and waiting for the result. We have a much richer domain model and an
architecture that will scale to larger systems available to us, but we have to
handle the fact that so much work is done asynchronously.

We don’t know when that command will be processed, but we know what
events to look for when it does—we defined those on page 174. But do we have
a way to link these events to the command that originated them? Take a
moment and see if you can answer that.

We sure do! That’s what traceIds are. They link messages that all originated
from the same user activity. The NameVideo command has a traceId, and any
events written in response to that command will have the same traceId.

Okay, so we know what event types to look for, and we know how to link event
instances to the command. If we just aggregated those into some sort of View
Data, we’d be able to query that View Data to know if the naming has succeed-
ed or failed. This View Data would need to link a traceId to the ID of the video
being acted on. It would also need to record if the command was successful,
and if the command failed, the View Data would need to record why so that
we could show that to users:

video-tutorials/migrations/20181224101632_create-video-operations.js
exports.up = function up (knex) {

return knex.schema.createTable('video_operations', table => {
table.string('trace_id').primary()
table.string('video_id').notNullable()
table.bool('succeeded').notNullable()
table.string('failure_reason')

})
}

exports.down = knex => knex.schema.dropTable('video_operations')

Chapter 11. Building Async-Aware User Interfaces • 178

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/migrations/20181224101632_create-video-operations.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

It has the four columns we just mentioned. If the succeeded column is true, then
the failure_reason column will be null.

Okay, so let’s look back at the HTTP handler for naming videos:

video-tutorials/src/app/creators-portal/index.js
function createHandlers ({ actions, queries }) {

function handleNameVideo (req, res, next) {
const videoId = req.params.id
const name = req.body.name

actions
.nameVideo(req.context, videoId, name)
.then(() =>

res.redirect(
`/creators-portal/video-operations/${req.context.traceId}`

)
)
.catch(next)

}
return {

handleNameVideo,
}

}

We already went through the action, and the catch is for unpredictable errors
like “hard disk blew up.” Let’s finish the happy path. We redirect users to
/creators-portal/video-operations/:traceId, where :traceId is the traceId of the current
request—the same traceId we attached to the command the action wrote. Let’s
write the handler for this redirect path:

video-tutorials/src/app/creators-portal/index.js
function handleShowVideoOperation (req, res, next) {

return queries.videoOperationByTraceId(req.params.traceId)
.then(operation => {

if (!operation || !operation.succeeded) {
return res.render(

'creators-portal/templates/video-operation',
{ operation }

)
}

return res.redirect(
`/creators-portal/videos/${operation.videoId}`

)
})

}

First we query for a video operation with the traceId we get from our request
params. Note that this is not the traceId of the current request. It’s the traceId of
the request that wrote the command. Here’s queries.videoOperationByTraceId:

report erratum • discuss

Responding to Users When the Response Isn’t Immediately Available • 179

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/app/creators-portal/index.js
function videoOperationByTraceId (traceId) {

return db.then(client =>
client('video_operations')
.where({ trace_id: traceId })
.limit(1)

)
.then(camelCaseKeys)
.then(rows => rows[0])

}

It just uses knex to query the video_operations table for a row whose trace_id
matches the traceId received as an argument.

The handler then checks to see if the query found either no matching operation,
or if there was one, if the operation failed. In either of those cases, we render a
page in response to the request. The context for the response is the value we
have for operation, which is either undefined or a row with false for its succeeded
property.

Here is a screenshot of the interstitial:

Let’s write the Pug for this screen:

video-tutorials/src/app/creators-portal/templates/video-operation.pug
extends ../../common-templates/layout

block content
- const pending = !operation

Chapter 11. Building Async-Aware User Interfaces • 180

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/creators-portal/templates/video-operation.pug
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

if pending
.row
.col-12

h1 Operation pending

p Your operation is pending... one moment please

script.
setTimeout(() => window.location.reload(), 1000)

else
.row
.col-12

- videoUrl = `/creators-portal/videos/${operation.videoId}`

h1 Operation failed

p.alert.alert-danger= operation.failureReason

p
a(href=videoUrl) Back to the video

First off, we want this page to have the same basic look and feel as every page
in our site, so we declare that it extends from ../../common-templates/layout, which
resolves to the templates in code/video-tutorials/src/app/common-templates. Next, in block
content, we declare a variable named pending, which will be true if queries.videoOper-
ationBytraceId did not find a row. This means that the Aggregator has not yet picked
up the result of the naming command. If that’s the case, we tell users their
operation is pending. We then add a small snippet of JavaScript that will
reload the current page in 1 second. This will set up a polling loop so that
when the operation completes, users will get the result.

However, if there was an operation row, the only reason we’d render this template
is if said operation failed. If that’s the case, we let users know why, and then
we offer them a link to the video’s page where they can enter a different name
if they still want to rename the video.

Back to the HTTP handler then, if we found the operation, and it succeeded,
we redirect them to the video’s page. Boom! You just handled async UI. Is
this always the right pattern? No. But it works for this use case.

Two steps remain. We need the video publishing Component to process the
command, and we need an Aggregator to populate the video operations View
Data. Let’s tackle the Component.

Adding Validation to a Component
Let’s handle that NameVideo command in the video-publishing Component:

report erratum • discuss

Adding Validation to a Component • 181

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/components/video-publishing/index.js
function createHandlers ({ messageStore }) {

return {
NameVideo: command => {

const context = {❶
command: command,
messageStore: messageStore

}

return Bluebird.resolve(context)
.then(loadVideo)❷
.then(ensureCommandHasNotBeenProcessed)
.then(ensureNameIsValid)
.then(writeVideoNamedEvent)
.catch(CommandAlreadyProcessedError, () => {})❸
.catch(❹

ValidationError,
err => writeVideoNameRejectedEvent(context, err.message)

)
},
// ...

}
}

❶ First, build a context consisting of the command in question and the message-
Store.

❷ Next, load the video’s publishing history with loadVideo—you wrote that
earlier on page 165. Then validate the command by ensuring it hasn’t
already been processed and that the name follows our rules for what
makes a valid name. If that’s successful, we write a VideoNamed event to
show it worked. We’ll look at these steps in just a moment, right after we
look at our catches.

❸ If ensureCommandHasNotBeenProcessed detects that we’ve processed this com-
mand before, it throws a CommandAlreadyProcessedError, which we catch here
and turn into a no-op.

❹ If ensureNameIsValid finds an invalid name for the video, it throws a Validation-
Error, which we catch here. We use the message from the given error to call
writeVideoNameRejectedEvent. That’s our failure event, and err.message contains
why it failed.

Let’s break down the steps of that pipeline. You wrote load video on page 165,
so we don’t have anything more to say on it here.

Next, we make sure we haven’t already processed this command:

Chapter 11. Building Async-Aware User Interfaces • 182

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/components/video-publishing/ensure-command-has-not-been-processed.js
const CommandAlreadyProcessedError =

require('./command-already-processed-error')
function ensureCommandHasNotBeenProcessed (context) {

const command = context.command
const video = context.video

if (video.sequence > command.globalPosition) {
throw new CommandAlreadyProcessedError()

}

return context
}

module.exports = ensureCommandHasNotBeenProcessed

Imagine for just a moment that we have a property on our video entity named
sequence which is the globalPosition of the last VideoNamed or VideoNameRejected event
applied to this video. If we’ve already processed the command we’re considering
right now, either in the affirmative or in the negative, one of these two types of
events would have been written. That event’s globalPosition would necessarily be
greater than this command’s globalPosition, and thus sequence would be greater
than the command’s globalPosition. In that case, we throw a CommandAlreadyProcessedError.

Now, the only hitch is that the video’s projection doesn’t currently handle our
naming events, so let’s fix that:

video-tutorials/src/components/video-publishing/video-publishing-projection.js
const videoPublishingProjection = {

$init () {
return {
id: null,
publishingAttempted: false,
sourceUri: null,
transcodedUri: null,
sequence: 0,➤

name: ''➤

}
},
VideoNamed (video, videoNamed) {

video.sequence = videoNamed.globalPosition
video.name = videoNamed.data.name

return video
},

VideoNameRejected (video, videoNameRejected) {
video.sequence = videoNameRejected.globalPosition

return video
},

report erratum • discuss

Adding Validation to a Component • 183

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/ensure-command-has-not-been-processed.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/video-publishing-projection.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

First off, notice that we’ve added sequence and name to $init. Then we added two
events to the projection, namely VideoNamed and VideoNameRejected. They assign
the event.globalPosition into the sequence field on the projected value. The function
for VideoNamed also assigns the video’s name.

Now that you know this command has not already been processed, we can
make sure the name is valid:

video-tutorials/src/components/video-publishing/ensure-name-is-valid.js
const validate = require('validate.js')Line 1

-

const ValidationError = require('./validation-error')-

-

const constraints = {5

name: {-

presence: { allowEmpty: false }-

}-

}-

function ensureNameIsValid (context) {10

const command = context.command-

const validateMe = { name: command.data.name }-

const validationErrors = validate(validateMe, constraints)-

-

if (validationErrors) {15

throw new ValidationError(-

validationErrors,-

constraints,-

context.video-

)20

}-

-

return context-

}-

25

module.exports = ensureNameIsValid-

This function validates the proposed name using the validate.js library. We used
this same library when we were registering users on page 93. We define con-
straints at line 5, and in this case we’re just checking to see if the user sup-
plied a non-blank name for the video. If they didn’t, we throw a ValidationError,
which will contain the information we need to tell users how to correct their
commands. This is some weak validation, to be sure. If we wanted to include
other validation (for example, making sure that the name didn’t contain pro-
fanity or other undesirable text), we’d add that here as well.

Assuming all our checks passed, we record this state transition in the video’s
history:

Chapter 11. Building Async-Aware User Interfaces • 184

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/ensure-name-is-valid.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

video-tutorials/src/components/video-publishing/write-video-named-event.js
function writeVideoNamedEvent (context) {

const command = context.command
const messageStore = context.messageStore

const videoNamedEvent = {
id: uuid(),
type: 'VideoNamed',
metadata: {
traceId: command.metadata.traceId,
userId: command.metadata.userId

},
data: { name: command.data.name }

}
const streamName = `videoPublishing-${command.data.videoId}`

return messageStore.write(streamName, videoNamedEvent).then(() => context)
}

module.exports = writeVideoNamedEvent

Construct a VideoNamedEvent using the values from the command stashed into
context. Then build the streamName where we should write the event to, and
write the event, concluding the happy path.

If one of our failure conditions was triggered, we need to record that:

video-tutorials/src/components/video-publishing/write-video-name-rejected-event.js
function writeVideoNameRejectedEvent (context, reason) {

const command = context.command
const messageStore = context.messageStore

const VideoNameRejectedEvent = {
id: uuid(),
type: 'VideoNameRejected',
metadata: {
traceId: command.metadata.traceId,
userId: command.metadata.userId

},
data: {
name: command.data.name,
reason: reason

}
}
const streamName = `videoPublishing-${command.data.videoId}`

return messageStore.write(streamName, VideoNameRejectedEvent)
.then(() => context)

}

module.exports = writeVideoNameRejectedEvent

report erratum • discuss

Adding Validation to a Component • 185

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/write-video-named-event.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/write-video-name-rejected-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Here again, construct an event, only this time it’s a VideoNameRejected event. In
addition to the same data the successful event needs, include the reason that
comes from the error you caught. Then write this event to the video’s history.

And that concludes doing the validation inside of a Component. Hopefully
that wasn’t too surprising. It really isn’t ground-breaking tech to move a val-
idation function from one file to another. However, we did reinforce the prin-
ciple that Components are authoritative over their data, and that’s a core
principle.

Next we need to aggregate the results into the video operations View Data.

Aggregating Naming Results
You’ve built the application that allows users to manage their video metadata,
and you’ve built the Component that powers that management. Now it’s time
to populate the View Data that feeds the application. It’s a pretty straightfor-
ward Aggregator. First, its top-level function:

video-tutorials/src/aggregators/video-operations.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const handlers = createHandlers({ queries })
const subscription = messageStore.createSubscription({

streamName: 'videoPublishing',
handlers,
subscriberId: componentId

})

function start (es) {
subscription.start()

}

return {
handlers,
queries,
start

}
}

module.exports = build

It’s all the usual suspects here. Receive the db and messageStore; set up the
queries, handlers, and subscription. This Aggregator handles two events, namely
VideoNamed and VideoNameRejected. Let’s write the handler for VideoNamed events:

video-tutorials/src/aggregators/video-operations.js
function createHandlers ({ queries }) {

return {
VideoNamed: event => {

Chapter 11. Building Async-Aware User Interfaces • 186

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/video-operations.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/video-operations.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

const videoId = streamToEntityId(event.streamName)
const wasSuccessful = true
const failureReason = null

return queries.writeResult(
event.metadata.traceId,
videoId,
wasSuccessful,
failureReason

)
},

}

This file also defines a streamToEntityId function, which we use to get the videoId
from the event’s stream. Remember that we write these events to streams of
the form “videoPublishing-X”, where X is the video’s ID. Then we set a couple
of convenience variables. This event means the naming operation succeeded,
so wasSuccessful is true, and there is no failureReason.

We conclude by calling queries.writeResult, and if we’re going to call it, we need
to write it:

video-tutorials/src/aggregators/video-operations.js
function writeResult (traceId, videoId, wasSuccessful, failureReason) {

const operation = {
traceId,
videoId,
wasSuccessful,
failureReason

}

const raw = `
INSERT INTO

video_operations (
trace_id,
video_id,
succeeded,
failure_reason

)
VALUES

(:traceId, :videoId, :wasSuccessful, :failureReason)
ON CONFLICT (trace_id) DO NOTHING

`

return db.then(client => client.raw(raw, operation))
}

This query assembles an operation object with the arguments we received. Then
it runs an upsert query using PostgreSQL’s ON CONFLICT feature. This also
handles idempotence. The first time this is called, it will insert the result into

report erratum • discuss

Aggregating Naming Results • 187

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/video-operations.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

the video_operations table. If subsequent calls occur, they’ll have a conflict on
trace_id, and when that occurs we DO NOTHING.

The handler for VideoNameRejected events is almost exactly the same thing:

video-tutorials/src/aggregators/video-operations.js
function createHandlers ({ queries }) {

VideoNameRejected: event => {
const videoId = streamToEntityId(event.streamName)
const wasSuccessful = false
const failureReason = event.data.reason

return queries.writeResult(
event.metadata.traceId,
videoId,
wasSuccessful,
failureReason

)
}

}
}

The differences here are that wasSuccessful is false, and since it didn’t succeed,
we also have a failureReason, which we get out of the event.data.reason. Then we
make the same call to queries.writeResult.

And then wire it up in config.js:

video-tutorials/src/config.js
// ...
const createVideoOperationsAggregator =❶

require('./aggregators/video-operations')
function createConfig ({ env }) {

// ...
const videoOperationsAggregator = createVideoOperationsAggregator({❷

db: knexClient,
messageStore

})
const aggregators = [

// ...
videoOperationsAggregator,❸

]
return {

// ...
videoOperationsAggregator,❹

}
}

❶ First, require the Aggregator.

❷ Instantiate it, passing in a reference to the db and the messageStore.

Chapter 11. Building Async-Aware User Interfaces • 188

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/video-operations.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❸ Add it to the aggregators array so that it gets picked up and started in
src/index.js.

❹ Finally, include it in the config object so that it’s available in test.

And that’s it for the video operations Aggregator.

Applying Naming Events to the Creators Portal View Data
The Aggregator we just completed aggregates the status of the naming process.
We use that View Data to tell if the NameVideo command has finished processing.
At this point though, the new name will not be reflected in the Creators Portal
dashboard or in the single video view. That’s a different View Data, and it’s
a different Aggregator. We need to add a handler to the creators-videos Aggregator:

video-tutorials/src/aggregators/creators-videos.js
function createHandlers ({ messageStore, queries }) {

return {
VideoNamed: event =>
queries.updateVideoName(

streamToEntityId(event.streamName),
event.position,
event.data.name

),
}

}

This handler uses streamToEntityId to get the video’s ID and then passes that ID
to queries.updateVideoName along with the event’s version and the new name found
in event.data.name. Let’s write queries.updateVideoName:

video-tutorials/src/aggregators/creators-videos.js
function updateVideoName (id, position, name) {

return db.then(client =>
client('creators_portal_videos')
.update({ name, position })
.where({ id })
.where('position', '<', position)

)
}

This function updates the name column in the row whose id column matches
the videoId argument. Two notes:

• Notice how we handle idempotence. This query will only run on a row
whose position column is strictly less than the event’s position.

• This function is another with the word “update” in its title. This is appro-
priate because this is a database function. The domain said “this video

report erratum • discuss

Applying Naming Events to the Creators Portal View Data • 189

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/creators-videos.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/creators-videos.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

was named,” and that domain event leads to a database record being
updated.

Justifying Our UI Decision
Yes, the flow of communicating to users when their naming requests have
been processed ain’t pretty. Like we said in the beginning, every model we
choose comes with its complexity, and autonomous components are no
exception. Because the response to a user’s request isn’t immediately available,
we need UI patterns to compensate. You just implemented one pattern—redi-
recting to a polling interstitial.

Here again is that screenshot of the video operations interstitial:

This page polls until the operation completes and then either shows users
the failure reason or takes them back to the video’s page. This works, but it
isn’t ideal. A big reason for the clunkiness here is that we’re rendering our
UI on the server. We didn’t delay sending a response to the user until the
command had finished processing, although that was an option. But keeping
a request open while a potentially long-running process would tie up server
resources.

We could mitigate a lot of this clunkiness by building a richer client applica-
tion, using optimistic updates as our theatrics instead. A rich client-side
application could do the polling in the background, and users wouldn’t have

Chapter 11. Building Async-Aware User Interfaces • 190

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

to have it shoved in their faces. We didn’t do that here because this isn’t a
book about, say, React.2 If you have experience with browser app development,
by all means, give it a shot!

The fact remains that making things asynchronous is something that will affect
your user experience. If you try to use a service-based, asynchronous archi-
tecture but still use all the same UI idioms you’ve used before, you’re going
to have a bad time. We’re still in our MVP stage right now, though, and once
those sweet membership dollars begin flowing in, we can make a nicer UI.

What You’ve Done So Far
In this chapter you made it so that our creators can manage their videos. To
make that happen, you came face to face with one of the things that is more
difficult in a services architecture—rendering responses when they aren’t
immediately available.

While the content creators can name their videos, they still can’t describe
them. Can you add that? It wouldn’t be much different than how the naming
works.

As another exercise, think through and draw out how you might improve this
experience with a richer browser client. Would part of how we did things still
apply? Is there still going to be some polling? What would the flow of data
look like?

One note before closing: when we decided on our message contract at the
beginning of this chapter, we chose, for example, VideoNamed as an event. We
could have chosen a name like VideoUpdated, but frankly, that’s a very bland
name. It doesn’t even tell us what changed. Furthermore, it would betray an
error in our thinking. A video isn’t just some row in a database that a user
updated a property on. It’s a rich entity, with a history, and set of defined
operations we can make on it. Naming it is one of those operations.

You’ve built a solid foundation so far in this book. Our users are registering,
and we’re spamming—err, sending useful emails to them. They’re uploading
videos, getting them transcoded, and editing their metadata. The time has
come to get this puppy deployed, which just so happens to be the topic of the
next chapter.

2. https://reactjs.org/

report erratum • discuss

What You’ve Done So Far • 191

https://reactjs.org/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Part III

Tools of the Trade

Having built the functioning pieces of the system,
we look at the tools we have to release what we
built to the world. How do we deploy? What ques-
tions do we have to answer? And what if something
goes wrong?

Covering everything to do with microservices is well
beyond the scope of any book, so we conclude by
calling out areas we didn’t look at and show av-
enues for where you can continue the journey.

CHAPTER 12

You can have a second computer once you’ve shown you know
how to use the first one.

 ➤ Paul Barham

Deploying Components
In 1889, France unveiled the Eiffel Tower as the entrance to that year’s World’s
Fair.1 If you were able to ask anyone who attended that moment whether they
would trade it for what you’re about to do in this chapter, well, you’d have a
whole lot of spectators right now. It’s the grand opening of Video Tutorials,
and you’re going to push it live on the internet.

The basic plan of attack is:

1. Sign up for Heroku,2 if you haven’t already.

2. Create a new “app”—Heroku has a different meaning for that word than
we do in this project.

3. Configure that “app.”

4. Deploy the code.

Once we’re satisfied that the system is running properly, we’ll then consider
what it would take to run Video Tutorials as a distributed system and why we
might choose to do so. Even though all of the code is in one codebase, we defi-
nitely still have a services-based system—the components are all autonomous.
What we don’t have so far is a distributed system. What you’ll see is that having
properly built the system, we can actually extract microservices—because unlike
in a distributed monolith, we actually have some.

Finally, when we distribute the system, you might think it’s a bit tedious, so
we’ll cover a different way of packaging the pieces of the system to make our
deployment strategy more flexible.

1. https://en.wikipedia.org/wiki/Eiffel_Tower
2. https://www.heroku.com

report erratum • discuss

https://en.wikipedia.org/wiki/Eiffel_Tower
https://www.heroku.com
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let’s do call out one thing. Your humble author has no commercial interest
in Heroku and is not receiving any compensation from them. It’s just an easy-
to-use platform that will help us get this system running. If you’d prefer to
deploy it elsewhere, by all means use whatever you’d like.

Strap yourself in because here we go.

Creating the Heroku “App”
It’s quite possible that you haven’t heard of or have never used Heroku. It’s
a platform-as-a-service company, or PaaS for short. If you’ve ever used a
cloud provider like Amazon Web Services, Google Cloud Platform, Digital
Ocean, or Linode, then you’ve experienced deploying code to a cloud provider.
Heroku is similar, only you exchange the high degree of control and respon-
sibility you have over your instances for a very smooth deployment experience.
You don’t have to provision instances, do all the security hardening, etc. You
just easily push code. Of course, sometimes you need that finer degree of
control. We don’t right now, so we won’t bother with it.

Now, we won’t walk through signing up for an account there. If you managed
to get a copy of this book, you already know how to sign up for a website. In
case you’re concerned, unless you’re already running a number of projects
on Heroku, you won’t have to pay any money to deploy Video Tutorials. So
we’re going to assume that you’ve registered and have made it to your Heroku
dashboard.

Hopefully the UI there hasn’t changed a lot by the time you’re reading this,
so assuming it hasn’t, from the dashboard, choose the “New” button in the
upper right and select “Create New App” in the menu that then appears:

From there choose a name for the app. Sadly, some, uh, unknown person
already chose “video-tutorials” for deploying something else, so that name
won’t be available to you as shown in the screenshot on page 197.

After clicking “Create App” you’ll be taken to that “app’s” page. You’ll need to
get the project’s code into a directory and make a Git repository out of it. Then
follow Heroku’s instructions for “Existing Git repository,” and add the heroku
remote.

Chapter 12. Deploying Components • 196

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Next up, we need to add a database and configure the environment variables
our system needs.

Configuring the “App”
From the main “app” page, click on “Resources:”

On the “Resources” page, type “postgres” and the option for “Heroku Postgres”
should appear. Select that. It will then pop up a dialog asking you to select

report erratum • discuss

Configuring the “App” • 197

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

a “Plan.” “Hobby Dev - Free” is good for now. IMPORTANT: Do this a second
time. One will be for all View Data, and the other will be for Message DB.
Having attached two databases, your “Resources” screen will resemble the
following:

Yours will likely not say HEROKU_POSTGRESQL_COBALT, and guess what? Mine
doesn’t anymore either.

Next, click on the “Settings” tab. There will be a button in the “Config Vars”
section that says “Reveal Config Vars.” Click that button to reveal the environ-
ment variables:

On the Settings page, you’ll type environment variable names into the box
that says “KEY” and their corresponding values into the box that says “VAL-
UE.” You should already see the DATABASE_URL key–value pair. Click on the
“Add” button and add the following pairs on page 199.

Chapter 12. Deploying Components • 198

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

VALUEKEY

Video TutorialsAPP_NAME

something of your choiceCOOKIE_SECRET

tmp/emailEMAIL_DIRECTORY

see belowMESSAGE_STORE_CONNECTION_STRING

productionNODE_ENV

no-reply@example.comSYSTEM_SENDER_EMAIL_ADDRESS

Notice that this list is very similar to the environment variables in .env. MES-
SAGE_STORE_CONNECTION_STRING should get the same value as the second database
URL. Using the screenshots above, Heroku named the second Heroku Postgres
instance HEROKU_POSTGRESQL_COBALT. In the environment variables, Heroku pre-
populated a HEROKU_POSTGRESQL_COBALT_URL. Duplicate the value of that key into
a new key named MESSAGE_STORE_CONNECTION_STRING.

PORT is missing from this list, since Heroku will supply it at runtime.

For COOKIE_SECRET you’ll want to put something good and random there, since
that will be the key used to sign cookies in our system. There’s a script at
video-tutorials/src/bin/generate-cookie-secret.js. If you look at the project’s package.json
file, you’ll see you can invoke it with npm run generate-cookie-secret. That will give
you output resembling the following:

$ npm run generate-cookie-secret

> microservices-book@1.0.0 generate-cookie-secret
> node src/bin/generate-cookie-secret

eff41191a4c1f51742496bd07ec9ca5407a94e0e98fb995f920d8690828c7aa8

If you run that script, you can copy the resulting string and make that your
COOKIE_SECRET value if you wish. Or you can put something else. Up to you.
But, whatever you do, don’t put the one that appeared in print in this book.
No one else is supposed to know your secret. That’s why it’s called a secret.

Installing Message DB
Next we need to install Message DB into that second Heroku Postgres instance.
There is a script in code/video-tutorials/script/install-message-store-in-heroku.js that will
do the necessary installation. You’ll need to have installed the psql client on
your machine, so if you haven’t, follow the directions at the PostgreSQL
website3 to get up and running.

3. https://www.postgresql.org/download/

report erratum • discuss

Installing Message DB • 199

https://www.postgresql.org/download/
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Assuming you have that client installed, you’ll need your connection creden-
tials. These are found in the value of the MESSAGE_STORE_CONNECTION_STRING value
in Heroku. That string is of the form:

postgres://PGUSER:PGPASSWORD@PGHOST:PGPORT/PGDATABASE

Run the install-message-store-in-heroku.js script with a total of five environment
variables. Windows and *nix-based systems differ in how they treat environ-
ment variables, but in Bash, you’d invoke the script as follows:

[video-tutorials]$ PGUSER=mqlztugqizopuz \
PGPASSWORD=fd2b16b923521a2312ee9a63a8fe7c37d869fdde860abdbf1c0e172de9a7820f \
PGHOST=ec2-174-129-253-175.compute-1.amazonaws.com \
PGPORT=5432 \
PGDATABASE=d2a0cj6ir00kc2 node script/install-message-store-in-heroku.js

which will produce output similar to the following:

psql://code/video-tutorials/node_modules/@eventide/message-db/database/types/
message.sql:15: NOTICE: type "message_store.message" does not exist, skipping
psql://code/video-tutorials/node_modules/@eventide/message-db/database/
indexes/messages-category.sql:1: NOTICE: index "messages_category" does
not exist, skipping
psql://code/video-tutorials/node_modules/@eventide/message-db/database/
indexes/messages-id.sql:1: NOTICE: index "messages_id" does not exist,
skipping
psql://code/video-tutorials/node_modules/@eventide/message-db/database/
indexes/messages-stream.sql:1: NOTICE: index "messages_stream" does not
exist, skipping

You might see slightly different output, but don’t be alarmed by the NOTICEs. You
can use those same PGUSER etc. values to use a database connection tool and
connect directly to the Heroku Postgres instance and verify the installation.

Deploying the System
Now that the “App” is configured, you should be able to deploy the system
code. If you set things up the way that Heroku told you to, then you’ll likely
just need to run git push heroku master. If you named your Git remote something
else, you’ll want to push to that. You should see a wall of text telling you that
the repo is being pushed and that the “App” is being built.

You should then be able to actually navigate a browser to the site. Since I can’t
know what you named your “App,” it would be impossible to give an exact link.
However, it’ll be something of the form https://<yourappname>.herokuapp.com. Navigate
to there, and you should be treated to a page like the screenshot on page 201.

Chapter 12. Deploying Components • 200

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

So while that is exactly the same page you loaded in development, this is
special because it’s actually deployed into the wild. Congrats! You just
deployed a bona fide microservices-based system into the wild.

Distributing the System
To distribute or not to distribute; that is the question. Tyler Treat wrote, “The
first rule of distributed systems is don’t distribute your system until you have
an observable reason to.”4 The following are not observable reasons to dis-
tribute:

• You want to use Kubernetes.5

• You read somewhere that microservices need to be distributed.
• You know how to put things in Docker containers.

Distributing a system is necessarily going to be more complicated than not
distributing it. More things to deploy. More things to organize. More moving
parts. But there are sometimes good reasons, and they revolve around avail-
ability.

Our system currently is deployed as a single unit. If you want to deploy a new
version of the video-publishing Component, you end up taking the Creators
Portal application down. If the user-credentials Aggregator crashes for some
reason, it’s taking the rest of the system down because it’s running in the
same process. Once we start scaling our development team, organizational
structure may lead us to deploying pieces independently. By making all
communication between pieces pub/sub-based and by respecting the message
contract, we absolutely can have this kind of independent deployment without
disturbing the rest of the system.

With the current size of Video Tutorials, we’re okay leaving it as a single unit.
We’re not observing any problems requiring us to distribute our pieces. But
let’s pretend that we are, so that you can see how it’s done.

4. https://bravenewgeek.com/service-disoriented-architecture/
5. https://kubernetes.io

report erratum • discuss

Distributing the System • 201

https://bravenewgeek.com/service-disoriented-architecture/
https://kubernetes.io
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Currently we have a codebase like the following—some of the pieces are
omitted so that the chart fits.

config.js

Home
Application

Creators Portal
Application

Video Publishing
Service

Identity
Service

User Credentials
Aggregator

We have a single codebase, a single process tied together via a config.js file.
The first obvious step in distributing this system and improving availability
is to separate the Applications from the asynchronous components. Making
this change will mean that if one of these components goes down, it won’t
bring down the website our users interact with. We’ll put each side of this
division into separate repositories, and connect those to new config.js files:

You can see how this is done in the distributed-video-tutorials folder. Because of the
way the code for the book is distributed, you weren’t able to download the code
as two separate repositories. But, once you have the code downloaded, you can
do the necessary filesystem manipulation. Make a Friday night out of it!

In any case, if you look in the distributed-video-tutorials folder, you’ll see two folders
under it, namely front-end and back-end. If you dig further into those folders,
you’ll find a familiar folder structure with a few changes. front-end doesn’t have
the aggregators or components folders, and back-end doesn’t have the app folder.
Furthermore, if you open the config.js files in each half, you’ll see that the bits
for the other half have been removed. Minor changes were made in src/index.js
too; for example, in the front end’s folder:

Chapter 12. Deploying Components • 202

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

distributed-video-tutorials/front-end/src/index.js
const createExpressApp = require('./app/express')
const createConfig = require('./config')
const env = require('./env')

const config = createConfig({ env })
const app = createExpressApp({ config, env })

function start () {
app.listen(env.port, signalAppStart)

}

function signalAppStart () {
console.log(`${env.appName} started`)
console.table([['Port', env.port], ['Environment', env.env]])

}

module.exports = {
app,
config,
start

}

Notice that in the start function there are no longer references to aggregators
and components. To reduce confusion, the Docker bit that starts the database
isn’t in both locations. We put it in the back-end because the Aggregators own
the tables we write to, so they also own starting the database locally. So,
locally, if you run the Docker image to get the database going and then run
npm install followed by npm run start-dev-server in both folders, you’ll be able to run
the system just as you did before.

If you want to deploy the distributed version to Heroku, I recommend creating
two new “apps.” You can attach the Postgres Add-on to the back end. The
code is set up so that front-end doesn’t have any migrations. It certainly could,
so that’s why its config.js specifies a different table for storing its migrations,
functionality you added back in on page 16:

distributed-video-tutorials/front-end/src/config.js
const knexClient = createKnexClient({

connectionString: env.databaseUrl,
migrationsTableName: 'front_end_migrations'

})

Note the new migrationsTableName. And one last note about deploying these
together to Heroku. The back-end deployment won’t start properly unless you
run the following command from the back end’s folder: heroku scale web=0 work-
er=1. By default, Heroku tries to run a web dyno.6 However, no part of the

6. https://devcenter.heroku.com/articles/dynos

report erratum • discuss

Distributing the System • 203

http://media.pragprog.com/titles/egmicro/code/distributed-video-tutorials/front-end/src/index.js
http://media.pragprog.com/titles/egmicro/code/distributed-video-tutorials/front-end/src/config.js
https://devcenter.heroku.com/articles/dynos
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

back-end deployment uses a web server, so we have to tell Heroku to not
expect one (web=0) and to expect a worker (worker=1). And also, heads-up: the
worker dyno will never sleep and will consume your free tier hours.

“Okay, that was a whole lot of work to just arrive at the same point,” you
might be thinking. It wasn’t as pointless as that. First, notice that distributing
the halves didn’t actually require any code changes to the actual components
themselves. You didn’t have to open anything under app, aggregators, or compo-
nents. There were no entanglements between any of those pieces. Second, the
system is now distributed, and it’s a distributed system of autonomous pieces.
At the end of the chapter, you’ll have an exercise where you intentionally
bring down half of the system and see how the other half is not affected—and
it won’t take any code to make it work.

Deploying Databases
You’ve probably noticed that this entire project uses a single physical database,
and that likely seems unsettling. If you analyze the code, you’ll notice that a
given instance of View Data is only ever written to by a single Aggregator.
View Data are built with a single Application in mind as well.

Earlier we showed how we could take code out of our single codebase and
begin to organize repositories around these separate pieces. It was mostly the
config.js file that felt the impact of that change, but all of the change was felt
at the outermost layer of the codebase. It was only the parts that connect the
operating system to our code. Autonomy made it this easy. Autonomy made
the deployment strategy independent of the actual system model.

Well, in a similar manner, we could move the tables in our single database
to different databases. One very obvious division would be to put the Message
Store in its own database, possibly its own server. But it’s questions of
availability that are going to determine that. As long as we honor the separa-
tion of concerns as Video Tutorials currently does, where to locate the tables
is a very separate concern.

What You’ve Done So Far
You deployed Video Tutorials in this chapter! Hopefully it brings you joy
thinking of all the people learning new things and all the content creators
making a living using your creation. You’ve now operationalized a microser-
vices-based system. This all started with an idea, and now you’ve taken that
idea and are able to hit it in a web browser. Nice work!

Chapter 12. Deploying Components • 204

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

To drive home the point of autonomy, consider the two halves in the distributed-
video-tutorials folder. These two halves can run completely independently. Prove
that to yourself. Start only the front end. Register a user. Click the “Record
video viewing” button on the home page a few times. That view count won’t
increment, and your user won’t be able to log in. Then stop the front end and
start the back end. Maybe load the Message Store database in the database
viewing tool of your choice. Notice that even though the front end is down,
the back end continues chugging its way through the messages it needs to
process. Then restart the front end and notice that all the operations you
queued have completed.

Those chunks are autonomous. While it’s unlikely you’d deliberately bring
down such a large chunk of functionality for a long time on purpose, you
probably will redeploy code from time to time. With autonomous components,
a redeployment of one component doesn’t make the whole system unavailable.

Now, of course this won’t ever happen to us, but you may have friends that
deploy systems that have bugs, and they’ll ask you for help debugging their
systems. What tools does this architecture provide for debugging? That’s the
topic of the very next chapter, so let’s head over there to fix our sys—err, our
friends’ systems.

report erratum • discuss

What You’ve Done So Far • 205

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 13

Debugging Components
(2 weeks have passed...)

That go-live button was probably the most satisfying button anyone has ever
pushed in the history of pushing buttons. Video Tutorials is live, people are
learning, and our content creators are making a nice living.

The call just came in, though, that while we’re getting a lot of signups, we’ve
had a significant drop in the number of people who are actually logging into
the site. We’ve got to figure this out and get things rolling again.

We’re going to look at how we can use the event-based architecture to detect
this problem in the first place and then how the architecture helps us debug it.
All the information we need is already being kicked out in the form of events,
so this chapter is going to be about interesting aggregations of that data.

Priming the Database with Example Data
First off, we’re working out of the code/debugging-components folder in this chapter
rather than our usual code/video-tutorials chapter, so make sure to switch there.

The story we’re telling in this chapter will make a whole lot more sense if you
prime your database with some good test data. It’s worthwhile to completely
destroy and rebuild your database before going any further. If you’re using
the Docker setup in this book, running docker-compose rm -sf followed by docker-
compose up in code/debugging-components will do just that. If you’re not using the
Docker setup, well, then do whatever you do to rebuild it.

Once you’ve done that, also from within code/debugging-components, run npm run
populate. That will inject 15 Register commands to prime the Message Store with
data. When you start the server, the Components will get to work on those
commands and produce corresponding events.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Now that we have data to work with, it’s time to put on your sleuthing hat
because the game is afoot!

Introducing the Admin Portal
What self-respecting system doesn’t have an Admin Portal? Certainly not
Video Tutorials!

Most of our work in this chapter is going to be working through building admin
capabilities to explore the wealth of debugging information the Message Store
provides for us. We don’t have enough space to print every line of code that
makes up this paragon of usefulness and good web design. Let’s start, though,
by exploring the first screen, which might help us debug what’s going on:

You can hit this in the running system by navigating to /admin/subscriber-positions.
First, on the left, notice that the navigation is broken up into three main
chunks. We have “Views,” such as “User.” Users are views, aggregations of
data. Then we have the “Messages” section, which contains links for slicing
and dicing the messages in interesting ways, such as a complete list of all
the messages and a list of all the streams in the system. But for now, we’re
most interested in the third section, “System Health.” Under this section we
have “Component Read Positions.” Remember those Read events we started
writing in Chapter 5, Subscribing to the Message Store, on page 65? Well, we
can aggregate those.

You can check out the code for that Aggregator in src/code/debugging-components/
aggregators/admin-subscriber-positions.js, but before you do, think through how you’d
write this Aggregator. What would the columns be? What category would the
subscription subscribe to? What message type(s) do you need to handle? How
would this Aggregator handle idempotence?

Looking at that page, yeah, nothing has reported anything. Take a moment
to think about why that is. How many messages did npm run populate write to
the Message Store? Fifteen. How often do components write their progress?

Chapter 13. Debugging Components • 208

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Every 100 messages. There’s not enough activity yet. This view has its uses,
but it’s pretty coarse. We need something finer.

Creating Users
Hopefully that header made you cringe. “Creating users? Didn’t you start
soapboxing on this in Beating a Dead Horse, on page 86?” Fair enough.
Maybe “Assembling Users” or “Building Frankenstein’s Monster” would be a
more accurate title. While our users aren’t monsters, we are going to take the
various streams of data related to our users and assemble them into an
aggregate view we’ll call “users.”

Specifically, we want a screen that shows users’ email addresses, the number
of times they’ve logged in, and whether or not we think we sent them their
registration email. This will be our first step in tracking down why people
aren’t receiving their emails—do we even think we’ve sent them? If we think
we have, then it might indicate that something is wrong with our email
provider. But we need the data first.

The data we need is sitting in the identity and authentication category streams.
But we don’t want to look at lists of events, so that means we’re going to write
an Aggregator. Let’s write the migration file for the view that we’re going to
populate with this Aggregator:

debugging-components/migrations/20190805180637_create-admin-users.js
exports.up = function up (knex) {

return knex.schema.createTable('admin_users', table => {
table.string('id').primary()
table.string('email')
table.boolean('registration_email_sent').defaultTo(false)
table.integer('last_identity_event_global_position').defaultTo(0)
table.integer('login_count').defaultTo(0)
table.integer('last_authentication_event_global_position').defaultTo(0)

table.index('email')
})

}

exports.down = knex => knex.schema.dropTable('admin_users')

There is an id column for the user’s ID, and then we two sets of columns. In
each set there are the data points we’re going to show in the admin screen
and then an idempotence column. Because the data we’re aggregating is in
two separate stream categories, we’re going to have two separate subscriptions.
We have no guarantees of message order across streams. Even though regis-
tration events must necessarily be written before we encounter login events,
we have no guarantee that the identity subscription will aggregate registration

report erratum • discuss

Creating Users • 209

http://media.pragprog.com/titles/egmicro/code/debugging-components/migrations/20190805180637_create-admin-users.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

events before the authentication subscription aggregates login events. So, we
need to track these last event IDs for each subscription.

Now we can get to the Aggregator itself:

debugging-components/src/aggregators/admin-users.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const identityHandlers = createIdentityHandlers({ queries })❶
const identitySubscription = messageStore.createSubscription({

streamName: 'identity',
handlers: identityHandlers,
subscriberId: 'e482ed56-311c-486c-9bb8-8c2e2ca6f6f4'

})

const authenticationHandlers = createAuthenticationHandlers({ queries })❷
const authenticationSubscription = messageStore.createSubscription({

streamName: 'authentication',
handlers: authenticationHandlers,
subscriberId: '18b4c5d6-1f30-4a67-9b61-76a42884a9bb'

})

function start () {❸
identitySubscription.start()
authenticationSubscription.start()

}

return {
authenticationHandlers,
identityHandlers,
queries,
start

}
}

module.exports = build

This is another multi-subscription Aggregator:

❶ First, we have the handlers/subscription pair for the identity category
stream. This category gives us the user’s email address, the result of our
work in Chapter 7, Implementing Your First Component, on page 105, and
whether or not we think we’ve sent the email, the result of our work in
Chapter 9, Adding an Email Component, on page 133.

❷ Next up, we have the pair for the authentication category. In Chapter 8,
Authenticating Users, on page 119, we set up this category to track user
login activity.

❸ And then notice that each subscription is separately started in the start
function.

Chapter 13. Debugging Components • 210

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Notice that each subscription has its own subscriberId. Remember from the
discussion back in Chapter 5, Subscribing to the Message Store, on page 65,
that the subscriberId becomes part of the name of the stream that periodically
records the last message that a subscriber has processed? If we don’t have
unique subscriberIds, then subscribers will clobber each other’s record of how
far they’ve made it in the message history.

Let’s add those two sets of handlers, starting with the Registered handler found
in the identity handlers:

debugging-components/src/aggregators/admin-users.js
function createIdentityHandlers ({ queries }) {

return {
Registered: event =>
queries

.ensureUser(event.data.userId)

.then(() =>
queries.setEmail(
event.data.userId,
event.data.email,
event.globalPosition

)
),

}
}

The identity subscription handles the Registered and RegistrationEmailSent events.
And when it handles either one, it needs to make sure that the user in question
exists, hence the call to queries.ensureUser passing in event.data.userId.

Here is queries.ensureUser:

debugging-components/src/aggregators/admin-users.js
function createQueries ({ db }) {

function ensureUser (id) {
const rawQuery = `

INSERT INTO
admin_users (id)

VALUES
(:id)

ON CONFLICT DO NOTHING
`

return db.then(client => client.raw(rawQuery, { id }))
}
return {

ensureUser,
}

}

report erratum • discuss

Creating Users • 211

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

It’s an idempotent query. We again use PostgreSQL’s ON CONFLICT DO NOTHING
capability to make it so that we can execute this query as many times as we
care to without ill effect. All this query does is insert a row with the ID pop-
ulated, ensuring that the row is in place before proceeding to handle either
message.

One we’ve ensured we have the user’s row, then we can go ahead and set the
email address with queries.setEmail:

debugging-components/src/aggregators/admin-users.js
function createQueries ({ db }) {

function setEmail (id, email, eventGlobalPosition) {
return db.then(
client =>

client('admin_users')
.update({
email: email,
last_identity_event_global_position: eventGlobalPosition

})
.where(

'last_identity_event_global_position',
'<',
eventGlobalPosition

)
.where({ id: id })

)
}
return {

setEmail
}

}

Again, because of the call to queries.ensureUser we get to assume that the user’s
row is in place. Making that assumption, this query then updates the email
column of the corresponding row. It also updates the last_identity_event_global_posi-
tion_id column, which we use for idempotence on identity events. But of course,
to be idempotent, we only do this where last_email_event_global_position_id is less
than the eventGlobalPosition that we are processing. Both of our query functions
are idempotent, and thus this handler is idempotent, so we are good to go
here.

Next up, RegistrationEmailSent events:

debugging-components/src/aggregators/admin-users.js
function createIdentityHandlers ({ queries }) {

return {
RegistrationEmailSent: event => queries
.ensureUser(event.data.userId)
.then(() =>

Chapter 13. Debugging Components • 212

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

queries.markRegistrationEmailSent(
event.data.userId,
event.globalPosition

)
)

}
}

It’s similar in shape to the Registered handler. Notice how this handler also
starts with the call to queries.ensureUser. Our message flow doesn’t allow an
email to go out before a user registers, but we include this check as a safety
measure against future changes because it doesn’t cost much to keep it. But
the site is currently on fire because users are reporting not getting their
emails, so let’s stop the idle chit chat and get back to making this view by
writing queries.markRegistrationEmailSent, the query that this handler calls:

debugging-components/src/aggregators/admin-users.js
function createQueries ({ db }) {

function markRegistrationEmailSent (id, eventGlobalPosition) {
return db.then(
client =>

client('admin_users')
.update({
registration_email_sent: true,
last_identity_event_global_position: eventGlobalPosition

})
.where(

'last_identity_event_global_position',
'<',
eventGlobalPosition

)
.where({ id: id })

)
}
return {

markRegistrationEmailSent,
}

}

This is the exact same shape as what we did for setEmail. Update the sent flag
to true and the last message processed to the current event’s ID, but only if
the currently recorded last message global position is less than the current
message’s global position so that the call is idempotent.

We won’t print the code for the authentication category handlers, which give us
the login count, because you’ve already encountered a similar pattern in the
code for queries.incrementVideosWatched on page 55. Do go read through it though
in code/debugging-components/src/aggregators/admin-users.js.

report erratum • discuss

Creating Users • 213

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-users.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Next we need to connect this Aggregator to the rest of the system so that it
runs. This takes us to config.js:

debugging-components/src/config.js
// ...
const createAdminUsersAggregator = require('./aggregators/admin-users')
function createConfig ({ env }) {

// ...
const adminUsersAggregator = createAdminUsersAggregator({

db: knexClient,
messageStore

})
const aggregators = [

// ...
adminUsersAggregator,

]
return {

// ...
adminUsersAggregator,

}
}

This is the same pattern you used with, for example, the home page Aggregator
on page 60 and the user credentials Aggregator on page 121:

1. Pull in the creator function.
2. Instantiate the Aggregator with a reference to the db and messageStore.
3. Add it to the aggregators array.
4. Add it to the config return object.

With the Aggregator connected, its View Data is getting populated. Now we
need to display it.

Wiring the Users View into the Admin Portal
It’s an application, so we start with our standard application preamble:

debugging-components/src/app/admin/index.js
function createAdminApplication ({ db, messageStoreDb }) {

const queries = createQueries({ db, messageStoreDb })
const handlers = createHandlers({ queries })

const router = express.Router()

router.route('/users').get(handlers.handleUsersIndex)
router.route('/users/:id').get(handlers.handleShowUser)

Chapter 13. Debugging Components • 214

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/config.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return {
handlers,
queries,
router

}
}

module.exports = createAdminApplication

Set up the queries, handlers, and router. We’re going to start with two routes. The
first is for the master list of users, and the second is for a particular user.
Master list first:

debugging-components/src/app/admin/index.js
function createHandlers ({ queries }) {

function handleUsersIndex (req, res) {
return queries
.usersIndex()
.then(users =>

res.render('admin/templates/users-index', { users: users })
)

}
return {

handleUsersIndex,
}

}

Routes that just display data generally follow a “query for the data -> render
it in a template” pattern, and this is no exception. That query is found in
queries.usersIndex, so let’s write that:

debugging-components/src/app/admin/index.js
function createQueries ({ db, messageStoreDb }) {

function usersIndex () {
return db
.then(client => client('admin_users').orderBy('email', 'ASC'))
.then(camelCaseKeys)

}
return {

usersIndex,
}

}

You just finished populating that admin_users table, and all we’re doing here is
querying it and ordering the results by email. NB: WE ARE NOT WORRYING
ABOUT PAGINATION! Sorry to yell there. In future projects, you’ll definitely

report erratum • discuss

Wiring the Users View into the Admin Portal • 215

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

want to paginate your results, but for Video Tutorials, we don’t want to distract
from the rest of the flow.

Once this query has completed, we render the template found at code/debugging-
components/src/app/admin/templates/users-index.pug. It’s a basic page with a table to
display all the users and worth reprinting here. That finishes the Users view
in the Admin Portal. Those user IDs are links that will show us a given user’s
activity, so let’s hook that up too. In the top-level function on page 214 we
wrote that the single-user endpoint is handled by handlers.handleShowUser, so
let’s handle that one:

debugging-components/src/app/admin/index.js
function createHandlers ({ queries }) {

function handleShowUser (req, res) {
const userPromise = queries.user(req.params.id)❶
const loginEventsPromise = queries.userLoginEvents(req.params.id)
const viewingEventsPromise = queries.userViewingEvents(req.params.id)

return Promise.all([❷
userPromise,
loginEventsPromise,
viewingEventsPromise

]).then(values => {
const user = values[0]❸
const loginEvents = values[1]
const viewingEvents = values[2]

return res.render('admin/templates/user', {❹
user: user,
loginEvents: loginEvents,
viewingEvents: viewingEvents

})
})

}
return {

handleShowUser,
}

}

❶ This handler is a bit denser than others, and that’s because the data we’re
going to put in this view is not stored all in one location. We’re going to show
the users’ email addresses, their video viewing activity, and their login
activity. So, we set up three Promises to query for that data. JavaScript Promises
aren’t just fancy new syntax to avoid callback hell. They’re values that
merely aren’t available at the moment they’re instantiated. Values can be
given names, in this case userPromise, loginEventsPromise, and viewingEventsPromise.

Chapter 13. Debugging Components • 216

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❷ We then use the Promise.all1 function to wait for these three Promises to
resolve.

❸ Promise.all itself resolves to an array containing the result of each Promise
passed to it and in the same order. So, we extract the actual values we
were interested in. Notice the naming of the pairs. userPromise resolves to
user and so forth.

❹ With all of these values extracted, we can then render the template at
code/debugging-components/src/app/admin/templates/user.pug, passing in each of those
results.

The queries.user function just queries the admin_users table where the id column
is equal to the ID of the user in question—not very interesting at this point.
The other two are worth diving into though, as they use the Message Store’s
messages table directly.

First, let’s consider queries.userLoginEvents. In what stream would all the login
events for a given user be located? Check out Chapter 8, Authenticating Users,
on page 119 and the contract file at code/debugging-components/src/app/authenticate/con-
tract.md for a refresher before we write the following code:

debugging-components/src/app/admin/index.js
function createQueries ({ db, messageStoreDb }) {

function userLoginEvents (userId) {
return messageStoreDb.query(

`
SELECT

*
FROM

messages
WHERE stream_name=$1
ORDER BY global_position ASC

`,
[`authentication-${userId}`]

)
.then(res => res.rows)
.then(camelCaseKeys)

}
return {

userLoginEvents,
}

}

First, notice that we’re using the Message Store’s db connection, so we’re
dealing with the lower-level pg interface rather than knex. Then, the events

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

report erratum • discuss

Wiring the Users View into the Admin Portal • 217

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

that we’re after are in the authentication category, so for an individual user, we
just want authentication-X where X is the user’s ID. This is one of those rare
instances where the way we wrote the data is also the way we wanted to read
it, since we’re effectively building an audit log here.

Next, let’s write queries.userViewingEvents:

debugging-components/src/app/admin/index.js
function createQueries ({ db, messageStoreDb }) {

function userViewingEvents (userId) {
return messageStoreDb.query(

`
SELECT

*
FROM

messages
WHERE category(stream_name) = 'viewing' AND data->>'userId' = $1
ORDER BY global_position ASC

`,
[userId]

)
.then(res => res.rows)
.then(camelCaseKeys)

}
return {

userViewingEvents,
}

}

The trick here is that these streams are organized by the video that was viewed
and not by the user doing the viewing. So we need to get messages in the
viewing category, but that are also from our user. Message DB provides a cate-
gory function that takes a stream_name and plucks out the category. The user
that caused the event is of course stored in the messages’s data, so we peek
into that object as part of the query as well. This gets us a list of viewing
events associated with the user in question.

Now, both of these views would be better accomplished with proper Aggrega-
tors. We wouldn’t want to put unnecessary read burden on the Message Store,
since that’s not its job. In any case, we need to connect this admin application
into the rest of the system, including our Express app.

Hooking the Admin Portal into the Rest of the System
We start with our standard config.js work, and then we’ll deal with Express:

Chapter 13. Debugging Components • 218

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

debugging-components/src/config.js
// ...
const createAdminApp = require('./app/admin')
function createConfig ({ env }) {

// ...
const adminApp = createAdminApp({

db: knexClient,
messageStoreDb: postgresClient

})
return {

// ...
adminApp,

}
}

Require. Instantiate. Return. Sounds like the makings of a political candidate’s
slogan. Notice the Admin Portal takes a reference to the Message Store’s database
connection. We’ll do some queries against the Message Store directly.

Let’s mount it in Express:

debugging-components/src/app/express/mount-routes.js
function mountRoutes (app, config) {

app.use('/', config.homeApp.router)
app.use('/record-viewing', config.recordViewingsApp.router)
app.use('/register', config.registerUsersApp.router)
app.use('/auth', config.authenticateApp.router)
app.route('/admin').get((req, res) => res.redirect('/admin/users'))➤

app.use('/admin', config.adminApp.router)➤

}

We pull one bit of trickery here. We set up a route on /admin to redirect to
/admin/users. That way, if we hit the root of the Admin Portal, we don’t get a
404. And yes, you would want to secure your Admin Portal behind an
authentication wall. Hiding it behind a predictable URL, even one that isn’t
linked to from anywhere on the site, is not a Security Best Practice™. And
believe you me, nefarious actors will be gunning for this site.

Inspecting the Results So Far
All right, with the Admin Portal wired up, start your server with npm run start-
dev-server and navigate to the /admin route. That’ll land you at the master users
list as shown in the screenshot on page 220.

Ouch! That’s a whole lot of “no” on that screen. For every single user, the
“registration email sent” column is telling us “no.”

report erratum • discuss

Inspecting the Results So Far • 219

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/config.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/express/mount-routes.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

It’s looking like we don’t think we’ve sent the emails, but at this point, there
are still two possibilities. Can you think of what they are? As a hint, you’re
looking at the output from an Aggregator.

It could be that the Aggregator isn’t aggregating. It could also be that there
are no RegistrationEmailSent events in the Message Store for our Aggregator to
aggregate. Before we dive into that, let’s confirm the symptom that no one is
logging in by clicking through to one of those users:

Indeed, it seems this user hasn’t logged in. We need to figure out what’s going on.

Thinking Through the Expected Flow
We know what’s supposed to happen when someone registers. The register-users
application writes a Register command that the identity component picks up. It
writes a Registered event in response to that command. It then handles its own
Registered event by writing a Send command that send-email observes and handles
by sending the email and writing a Sent event. identity is listening for that Sent
event. How can we construct a view that tells us if these three things happened
and in the proper sequence? Is there a piece of data we have that links these
messages across time and component boundaries, also known as distributed
tracing?

Chapter 13. Debugging Components • 220

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Sure is. Remember those traceIds we’ve been so careful to include? All three
of those messages would have the same one. We can build a view off of that.

Correlators Gonna…Correlate?
Back to the Admin Portal application, let’s set up another route:

debugging-components/src/app/admin/index.js
function createAdminApplication ({ db, messageStoreDb }) {

// ...
router

.route('/correlated-messages/:traceId')

.get(handlers.handleCorrelatedMessagesIndex)
// ...
return {

handlers,
queries,
router

}
}

Okay, here’s the handlers.handleCorrelatedMessagesIndex handler:

debugging-components/src/app/admin/index.js
function createHandlers ({ queries }) {

function handleCorrelatedMessagesIndex (req, res) {
const traceId = req.params.traceId

return queries
.correlatedMessages(traceId)
.then(messages =>

res.render('admin/templates/messages-index', {
messages,
title: 'Correlated Messages'

})
)

}
return {

handleCorrelatedMessagesIndex,
}

}

Extract the traceId from req.params and then call queries.correlatedMessages with that
traceId. When we get the results, we render the template at code/debugging-compo-
nents/app/admin/templates/messages-index.pug. That template has a more generic name
because it’s used for displaying lists of messages beyond those just grouped
by traceId, such as what you’ll get if you navigate to /admin/messages.

Let’s write that query:

report erratum • discuss

Correlators Gonna…Correlate? • 221

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

debugging-components/src/app/admin/index.js
function createQueries ({ db, messageStoreDb }) {

function correlatedMessages (traceId) {
return messageStoreDb.query(

`SELECT * FROM messages WHERE metadata->>'traceId' = $1`,
[traceId]

)
.then(res => res.rows)
.then(camelCaseKeys)

}
return {

correlatedMessages,
}

}

It SELECTs from messages looking for messages with the traceId we’re after.

This Query Does Not Use an Index!

It is very worth calling out that this implementation does not use
an index! With 45 messages in the Message Store—the count you’d
have if you’re running with a fresh database, ran the populate
script, and started the server—that isn’t going to be an issue. With
millions of messages, well, that would be a different story.

If you were going to build an Aggregator, you could have a table
with a trace_id column that stored one message per row. One mes-
sage per row seems very similar to the Message Store, but you’d
at least have an index on trace_id and pull these queries off of the
operational Message Store.

You could also feed the messages into something like ElasticSearch
or have a table with a JSONB column that stores an array of mes-
sages. You have the freedom to build what makes sense!

Back to the task at hand, let’s go ahead and navigate our browser to the
/admin/messages endpoint we mentioned a moment ago:

Chapter 13. Debugging Components • 222

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/app/admin/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

If you cleared your database and ran the populate script, then you’ll have
those fifteen commands at the top. Let’s take the first one and click on its
traceId. That takes us to the /admin/correlated-messages endpoint we just wrote
before. Drum roll, please…

Uh-oh. There are only three messages. We expected five messages because
our flow indicates five. We’re missing the Sent event from send-email and the
RegistrationEmailSent event from identity. Now, this could be because we sent the
emails and then crashed before writing the Sent event, but the symptom our
users are reporting is that they never got the emails. This suggests that send-
email isn’t running.

Imagining Our Way to Good System Monitoring
Okay, it’s no secret that merely writing to STDOUT is not a great logging strategy.
But let’s imagine that we had some sort of logging system set up that con-
sumed our STDOUT output—the same sort of thing you’d set up for any project.
The microservices architecture doesn’t change that.

We don’t put domain state in this sort of thing because that goes in the
Message Store. On the flip side, we don’t put debug logging in the Message
Store because debug logging isn’t domain state.

Anyway, we looked at our system logging that we totally set up, and we didn’t
see any messages from our subscription indicating that the subscription tried
to start and then crashed. It’s almost like we never told it to start!

Starting from the Beginning
We know that our components get started in src/index.js where we call start on
each of them. Since the other components are running, we know that line is
getting called. Is it possible the Component isn’t making it in there?

report erratum • discuss

Imagining Our Way to Good System Monitoring • 223

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let’s head over to src/config.js to find out:

debugging-components/src/config.js
const components = [Line 1

// ...2

identityComponent,3

// sendEmailComponent, //4

videoPublishingComponent5

]6

What in tarnation is going on at line 4?! Amateur hour, that’s what. We need
to have a serious look at our internal development processes that allowed a
stinker like this to make it onto actual servers. Someone commented out
sendEmailComponent, so it never made it into the services array, which means it
never got its start function called.

Go ahead and uncomment that line and start the server. send-email should
start chewing through those UserRegistered events and start sending those
emails. Mystery solved, sheesh. At least we have some nice debugging capa-
bilities as a result of this hunt.

Let’s add one more.

Viewing Messages by Stream
The Admin Portal also lets us explore all the streams that are in the Message
Store:

This view also gives us the number of messages in the stream and the global-
Position of the last message that updated the stream’s view. We could do this
as a raw query on the Message Store, but that would be a hefty query to
execute. We’ll instead add another Aggregator to generate this view. Let’s start
with the migration that builds the database table we’ll aggregate to:

Chapter 13. Debugging Components • 224

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/config.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

debugging-components/migrations/20190830155603_create-admin-streams.js
exports.up = function up (knex) {

return knex.schema.createTable('admin_streams', table => {
table.string('stream_name').primary()
table.integer('message_count').defaultsTo(0)
table.string('last_message_id')
table.integer('last_message_global_position').defaultsTo(0)

})
}

exports.down = knex => knex.schema.dropTable('admin_streams')

Four columns. First, the stream_name becomes the primary key for this table.
Those are going to be unique. Then we’re going to track a message_count so we
can know how many messages are in that stream. Then we have last_message_id,
which stores the ID of the last message written to this stream. Finally, all
handlers need to be idempotent, so we’ll track last_message_global_position like
we’ve done for previous View Data so that we can use a message’s global_position
as its idempotence key.

Let’s populate this table by writing the admin streams Aggregator:

debugging-components/src/aggregators/admin-streams.js
function build ({ db, messageStore }) {

const queries = createQueries({ db })
const handlers = createHandlers({ queries })
const subscription = messageStore.createSubscription({

streamName: '$all',
handlers: handlers,
subscriberId: '6db9a0ab-7679-4b02-b5ad-2ebc8ae06b6a'

})

function start () {
subscription.start()

}

return {
handlers,
queries,
start

}
}

module.exports = build

From the beginning, this is one part familiar, one part new. We have our
standard queries, handlers, and subscription trio. But look at that streamName the
subscription subscribes to. $all? What does that mean?

report erratum • discuss

Viewing Messages by Stream • 225

http://media.pragprog.com/titles/egmicro/code/debugging-components/migrations/20190830155603_create-admin-streams.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-streams.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Well, it’s a special stream name that we’re coming up with that means “every
message in the Message Store.” We want to aggregate every stream in the
Message Store. There isn’t a single category we could subscribe to that gives
us every message, and we don’t want to have to whitelist every possible cate-
gory we may ever come up with in the future. This is going to require augment-
ing the Message Store code, which we’ll do right after working through the
rest of this Aggregator.

Let’s check out the handlers:

debugging-components/src/aggregators/admin-streams.js
function createHandlers ({ queries }) {

return {
$any: event => queries.upsertStream(
event.streamName,
event.id,
event.globalPosition

)
}

}

“Handlers” with an “s” may have oversold this one. There’s just one handler,
and it is one of those very rare exceptions we talked about back on page 71
when we wrote the handleMessage function of the subscription mechanism in
the Message Store. This handler uses an $any, which means that it wants to
handle every type of message. This means we don’t have to enumerate every
message type in the system for this Aggregator. Yay!

It doesn’t do much though, merely extracting the streamName, id, and globalPosition
from the message—yes message, because this Aggregator is tracking all streams
and not just entity streams—and passing them to queries.upsertStream:

debugging-components/src/aggregators/admin-streams.js
function createQueries ({ db }) {

function upsertStream (streamName, id, globalPosition) {
const rawQuery = `

INSERT INTO
admin_streams (

stream_name,
message_count,
last_message_id,
last_message_global_position

)
VALUES

(:streamName, 1, :id, :globalPosition)

Chapter 13. Debugging Components • 226

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-streams.js
http://media.pragprog.com/titles/egmicro/code/debugging-components/src/aggregators/admin-streams.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

ON CONFLICT (stream_name) DO UPDATE
SET

message_count = admin_streams.message_count + 1,
last_message_id = :id,
last_message_global_position = :globalPosition

WHERE
admin_streams.last_message_global_position < :globalPosition

`

return db.then(
client => client.raw(rawQuery, { streamName, id, globalPosition })

)
}

return { upsertStream }
}

This query has a few things going on. It’s an upsert operation, which will
insert a new row if the corresponding stream does not yet exist in the View
Data or update said row if it already does. It helps to consider it in those two
chunks.

First, it’s a basic INSERT, setting the stream_name, last_message_id, and last_mes-
sage_global_position to the values that were passed in. If we’re actually doing the
INSERT, then that means this is the first message we’ve encountered for this
stream. So 1 is not only the loneliest number that you’ll ever do,2 it’s also the
correct number of messages for this stream at this point in time.

Now comes the upsert part. If we’re handling this message a second time, by
definition we’re not taking the INSERT path. We again use PostgreSQL’s ON
CONFLICT functionality, using the stream_name column as the conflicting column.
If that’s the case we do a conditional UPDATE, incrementing message_count and
setting last_message_id and last_message_global_position to the current message’s
values. That wouldn’t be enough to make this idempotent, which is where
the WHERE clause comes in. It restricts this UPDATE to cases where the current
last_message_global_position is less than the incoming message’s globalPosition.

That’s a lot, so let’s review the three cases we could encounter.

• Legitimately handling this stream for the first time—we take the INSERT
path. All is well.

• Legitimately handling additional messages to the same stream—we take
the ON CONFLICT branch. Because the incoming message’s globalPosition is
greater than the current last_message_global_position, we increment the count
and update last_message_id and last_message_global_position. All is well.

2. https://www.youtube.com/watch?v=d5ab8BOu4LE

report erratum • discuss

Viewing Messages by Stream • 227

https://www.youtube.com/watch?v=d5ab8BOu4LE
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

• Re-handling a message—we’ll get a conflict on stream_name, but we won’t
UPDATE because the last_message_global_position will not be less than the
incoming message’s globalPosition. All is well.

And should the Aggregator die before the query is through? Well, it’ll just
restart later. All is well.

Augmenting the Message Store for $any and $all
Technically, we don’t have to do anything to support $any, since we did that
back on page 71 when we wrote the subscribe functionality’s handleMessage
function. That was too good of a header to pass up though.

Let’s jump into the Message Store’s read functionality to provide messages
for $all:

debugging-components/src/message-store/read.js
const getAllMessagesSql = `

SELECT
id::varchar,
stream_name::varchar,
type::varchar,
position::bigint,
global_position::bigint,
data::varchar,
metadata::varchar,
time::timestamp

FROM
messages

WHERE
global_position > $1

LIMIT $2`
function read (streamName, fromPosition = 0, maxMessages = 1000) {

let query = null
let values = []
if (streamName === '$all') {➤

query = getAllMessagesSql➤

values = [fromPosition, maxMessages]➤

} else➤

if (streamName.includes('-')) {
// Entity streams have a dash
query = getStreamMessagesSql
values = [streamName, fromPosition, maxMessages]

} else {
// Category streams do not have a dash
query = getCategoryMessagesSql
values = [streamName, fromPosition, maxMessages]

}

Chapter 13. Debugging Components • 228

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/debugging-components/src/message-store/read.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return db.query(query, values)
.then(res => res.rows.map(deserializeMessage))

}

First, we have the SQL we’ll use to run the query, and then down in read we
choose that SQL and the corresponding values based on streamName being $all.

With this additional functionality in place, the “Streams” view is now supplied
with data. Explore it a little bit. The stream names are links to a view that
shows all the messages in that particular stream, so click through to those
to get a feel for how you slice and dice the messages in interesting ways.

What You’ve Done So Far
You can add “Code Sleuth” to your resume after this chapter. Sure, it was a
contrived example, but in the process of exploring it, you built quite a few
useful debugging capabilities. The tools you built in this chapter will save
countless hours for your team members, so way to go.

This chapter was sprinkled with a lot of thought exercises, so let’s add just
one coding exercise here. The Admin Portal has a link to “Categories (to do)”
under the “Messages” header. That portion of the Admin Portal is not at all
done, so work through adding that. It will be very similar in spirit to the
“Streams” view that closed this chapter, only instead of counting the individ-
ual stream, you’ll need to map each stream to a category. So start with the
database migration and then build the Aggregator and changes in to the
Admin Portal that you need. And of course, remove “(to do)” from the link in
the Admin Portal UI.

We’re rapidly approaching the end of our journey, and up to this point, we
have barely mentioned testing, let alone shown any examples of it. If you have
been developing software for any length of time, surely you know how
important it is to test your dang code. How else will you know you have a
good system design? Rest assured that we do have tests for Video Tutorials,
and it being a microservices-based system, there are some interesting things
to say about testing that are particular to this architecture. Are you in for
one more? Okay, let’s go for it!

report erratum • discuss

What You’ve Done So Far • 229

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 14

Testing in a Microservices Architecture
In another life, your humble author studied economics instead of computer
science and probably never would have started working with microservices
architectures. That guy, of course, is missing out, and we wish him well.
Hopefully, having made it this far in the book, you’re not wishing reality had
taken that other life’s path though.

Among the many concepts in the field of economics, two that have had a
profound impact on me are diminishing returns1 and opportunity cost.2 The
former states that holding all else equal, increasing a factor of production
begins to exhibit less benefit per unit added. You can intuit this. You have
great use for roughly 64 ounces of water per day and probably less use for
an additional 600 gallons. In fact, the only place where this concept doesn’t
hold true is in rock music where louder, faster, and more distortion will always
make something better. We digress.

Opportunity cost is the idea that every choice you take comes at the expense
of the best alternative choice you didn’t take, and it goes hand in hand with
diminishing returns. Each unit you add to a factor of production carries an
opportunity cost. While diminishing returns doesn’t necessarily mean that
everything gets worse as you add more, it does means you get less and less
bang for the buck. Since you’re getting less and less increase in value, it might
make sense to start deploying those units elsewhere.

It’s really important to keep these ideas in mind in life in general, but for our
purposes we’re going to talk about testing in a microservices architecture.
The fundamentals of testing software are sound, and if you don’t test as part
of your development process, well, start.

1. https://en.wikipedia.org/wiki/Diminishing_returns
2. https://en.wikipedia.org/wiki/Opportunity_cost

report erratum • discuss

https://en.wikipedia.org/wiki/Diminishing_returns
https://en.wikipedia.org/wiki/Opportunity_cost
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

First and foremost, testing is an invaluable design tool. It forces you to use
the code that you write! Your tests are a client of your code, and if your code
is hard to test, chances are that it’s also hard to use and maintain. If you
find yourself resorting to unholy things like mocks and stubs, that’s your
code telling you, “Please design me better!” Of course, testing also helps you
verify that your code produces your desired result.

But supposing that you do, things that are fundamental don’t change from
context to context, right? Gravity is a thing on Earth and on Jupiter. There
is nothing about microservices that invalidates the fundamentals of testing
and the laws of the universe. A full treatise on testing is well beyond the scope
of this book, let alone this chapter. However, this chapter is going to give a
flavor of how Video Tutorials has been tested and hopefully dispel some of
the myths around testing in microservices architecture.

One of the biggest myths is that you need to be at FAANG scale to benefit
from a microservices architecture, and an argument used in favor of that
myth is that you need a complicated test framework when you build
microservices. Bunkum and balderdash! Microservices make things simpler
by making it so you don’t have to hold as much in your head at any one time,
and testing is no exception.

We’re going to do three things in this chapter. We’ll (a) revisit the fundamentals
of our architecture so that we can (b) understand what needs automated
testing, and then (c) discuss why complicated end-to-end automated testing
falls squarely into the realm of diminishing returns.

Revisiting the Fundamentals
In Unmasking the Monolith, on page 25, we made the claim that the defining
characteristic of a service-based architecture is autonomy. Autonomous
components handle all of their communication through the Message Store.
They receive commands, and sometimes events, and write new events in
response. They have only this one execution mode. This is a subtle point with
a profound implication.

How can an autonomous component tell the difference between running in
a production environment and running in a test harness? Give up? It’s a trick
question. It can’t. It has absolutely no idea if a message is coming from a live
system or if it’s coming from a test. It’s kind of like the classic philosophical
question of how we can’t really be sure if our brains are sensing reality or if
we’re in a computer simulation. In the case of autonomous components, they
really can’t tell. They operate in the exact same manner.

Chapter 14. Testing in a Microservices Architecture • 232

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Also, not microservices-specific, but not all testing needs to be automated.
So, with these basic principles in mind, let’s look at what it takes to test an
autonomous component.

Writing Tests for Autonomous Components
Basically every test, microservices or not, is a three-step dance:

1. Set up the data for the test.
2. Exercise the (sub)system under test.
3. Make assertions about the results.

How does that work with autonomous components? Well, let’s consider one
of the very first autonomous components you wrote back in Writing Your
First Aggregator, on page 53, the home page Aggregator. Its job was and still
is to turn video view events into an aggregated global view count. Side by side
with every bit of code in this book are test files. They’re the ones that end in
.test.js. The test for the home page Aggregator is no exception. Let’s break down
the basic skeleton of a test file:

video-tutorials/src/aggregators/home-page.test.js
const test = require('blue-tape')
const uuid = require('uuid/v4')

const { config, reset } = require('../test-helper')

test('It aggregates a VideoViewed event', t => {
})

First of all, we’re using a library called blue-tape, which is a portemanteau of
bluebird and tape. tape is a fantastic testing library,3 and is your author’s pre-
ferred testing library. Primarily, it keeps tests decoupled from one another,
which is 100 percent in harmony with the goal of our overall system architec-
ture. Let’s not make this a chapter focused on tape though, so check out the
fantastic article that Eric Elliot wrote about testing with tape for more informa-
tion.4 blue-tape makes tape Promise-aware.

The test-helper.js sets up some helper functions for running our tests. Check it
out when you can, but for now config is the return value from config.js, and reset
deletes the contents of the View Data tables.

Finally, a tape test takes a string describing the test and then a function that
receives a single argument that we use to make test assertions.

3. https://www.npmjs.com/package/tape
4. https://medium.com/javascript-scene/why-i-use-tape-instead-of-mocha-so-should-you-6aa105d8eaf4.

report erratum • discuss

Writing Tests for Autonomous Components • 233

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.test.js
https://www.npmjs.com/package/tape
https://medium.com/javascript-scene/why-i-use-tape-instead-of-mocha-so-should-you-6aa105d8eaf4
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Now for the three-step dance:

video-tutorials/src/aggregators/home-page.test.js
test('It aggregates a VideoViewed event', t => {

const userId = uuid()❶
const videoId = uuid()
const videoViewedEvent = {

id: uuid(),
type: 'VideoViewed',
metdata: {
traceId: uuid(),
userId: uuid()

},
data: {
userId,
videoId

},
globalPosition: 1

}

return (❷
reset()
.then(() => config.homePageAggregator.init())
.then(() =>❸

config.homePageAggregator.handlers.VideoViewed(videoViewedEvent)
)
// Call it a second time to verify idempotence
.then(() =>

config.homePageAggregator.handlers.VideoViewed(videoViewedEvent)
)
.then(() =>

config.db.then(client =>❹
client('pages')
.where({ page_name: 'home' })
.then(homePageData => {

t.ok(homePageData, 'Got the home page data')

t.equal(
homePageData[0].page_data.videosWatched,
1,
'Even though we see the event twice, there is still only 1'

)
})

)
)

)
})

❶ Autonomous components function by responding to messages, so we set
up this message by constructing a VideoViewed event.

Chapter 14. Testing in a Microservices Architecture • 234

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.test.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

❷ Then we reset the database so that we have a known starting point for the
global count, followed by a call to the Aggregator’s init function. Normal
handling of events requires the row that the init function puts in place.

❸ Next we exercise the Aggregator’s handler by just calling it with the event
we built earlier. Handlers need to be idempotent, and if idempotence is
important enough to warrant the number of exclamation points we’ve
used throughout this book, then it’s important enough to explicitly test
it. So we immediately call the handler a second time.

❹ This Aggregator operates on the home page row in the pages table, so we
finally assert correct operation by querying for that row and then seeing
that the videosWatched count is 1, even though we handled the event twice.
We’re getting the right count, and it’s idempotent.

And that’s the basic pattern. It’s no different for the Components, even ones
that seem complicated, like video publishing:

video-tutorials/src/components/video-publishing/publish-videos.test.js
test('Writes a VideoPublishingFailed event when publishing fails', t => {

function lousyFetch () {❶
throw new Error('No can haz fetch')

}
const lousyMessageStore = {

...config.messageStore,
fetch: lousyFetch

}
const videoPublishingComponent = createVideoPublishingComponent({❷

messageStore: lousyMessageStore
})
const traceId = uuid()❸
const ownerId = uuid()
const userId = uuid()
const sourceUri = 'https://www.youtube.com/watch?v=dQw4w9WgXcQ'
const videoId = uuid()

const command = {
id: uuid(),
type: 'PublishVideo',
metadata: {
traceId,
userId

},
data: {
ownerId,
sourceUri,
videoId

}
}

report erratum • discuss

Writing Tests for Autonomous Components • 235

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/video-publishing/publish-videos.test.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return videoPublishingComponent.handlers.PublishVideo(command)
.then(() =>❹
config.messageStore.read(`videoPublishing-${videoId}`)

.then(messages => {❺
t.equal(messages.length, 1, '1 event written')

t.equal(messages[0].type, 'VideoPublishingFailed', 'It failed')
t.equal(messages[0].data.reason, 'No can haz fetch')

})
)

})

We’re just looking at one test in this file, the one that makes sure we capture
failures when publishing videos. For this test, we employ the dependency
injection we’ve set up in the project to make a Message Store substitute that
fails when attempting to fetch a stream.

❶ We first construct that substitute by making an aptly named lousyFetch
function. Then we build a lousyMessageStore by swapping in lousyFetch in place
of fetch.

❷ Then we make an instance of the video-publishing Component that uses this
lousyMessageStore.

❸ Then we have the normal kind of setup. This Component responds to
PublishVideo commands, so we build one of those.

❹ Then we exercise the Component’s handler.

❺ The results this time are in the stream associated with this video, so we
read the stream and assert that we got a VideoPublishingFailed event.

Notice that when a test doesn’t involve View Data, there’s no need to reset
the database. By using UUIDs for all the test IDs, we won’t have test collisions.

Writing Tests for Message-Writing Applications
Application tests are simpler as well. Generally, they just write a message
and then respond. Here’s a test used as part of registering users:

video-tutorials/src/app/register-users/register-users.test.js
test('Issues the registration command when user submits good data ', t => {

const userId = uuid()❶
const attributes = {

id: userId,
email: 'finally@example.com',
password: 'adsfasdf'

}

Chapter 14. Testing in a Microservices Architecture • 236

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/register-users/register-users.test.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return supertest(app)❷
.post('/register')
.type('form')
.send(attributes)
.expect(301)
.then(res => {
t.assert(res.headers.location.includes('registration-complete'))

})
.then(() =>❸
config.messageStore

.read(`identity:command-${userId}`)

.then(retrievedMessages => {
t.equal(retrievedMessages.length, 1, 'There is 1 message')
// Various assertions to make sure the command was filled out right

)
})

The same phases:

❶ Setup in this case is assembling a POST body to submit to the HTTP
handler.

❷ Then we make the HTTP POST to exercise the application.

❸ Then we retrieve the messages in the stream where the application is
supposed to write the command and do various assertions on the com-
mand.

None of this is any different from what you’ve likely done before, only you’re
writing a message instead of updating various tables or NoSQL equivalents.

Keeping It Simple
So why does any of that matter? Well, you just saw what it takes to test
autonomous components. Notice how there’s no complicated orchestration
of every piece of the system simultaneously. Even in the case of registering
users, which has a three-message flow to it, we don’t set up a difficult-to-
maintain replica of the whole system.

Each component can act in only one way—responding to messages. There’s
no need to replicate live, direct communication between components because
(a) our components don’t communicate directly with each other, and (b) we
weren’t mocking their interaction in test. In test we exercised them in exactly
the same way they get exercised in production.

report erratum • discuss

Keeping It Simple • 237

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Dropping Testing?
Does that mean we don’t have to test how the pieces work together? It depends
on how finely you want to split hairs.

Ed Keyes gave a wonderful presentation titled “Sufficiently Advanced Monitor-
ing Is Indistinguishable from Testing.”5 In it he brings up how things fail in
production in ways we can’t predict. So we can’t write tests to capture those
in advance. So what do we do? We rely on good monitoring.

You actually took this path in the previous chapter when you were debugging
why users weren’t getting their emails. You wrote a few screens that showed
you exactly where to look to fix the problem, such as the list of users starting
in Creating Users, on page 209, and then the view that puts correlated messages
together starting in Correlators Gonna…Correlate?, on page 221.

We could have instead spent several chapters setting up an elaborate pipeline
that would deploy a new full environment for each test that also could have
caught this, but at what cost? This is where diminishing returns and oppor-
tunity cost come in.

If we had infinite time at our disposal, there would be great value in
automating all the things. Our time is not infinite, however, and we have to
deal with trade-offs. Not all testing has to be automated, and in an architecture
like ours, it’s quite all right to monitor production rather than try to predict
every test case and attempt to run the whole system in test. Why?

In addition to what Ed Keyes said, remember that we’re storing our state as
a complete log of every state transition. We can sample message workflows
in production and verify that they’re correct after the fact. Because we have
a complete state history, fixing things that go wrong is possible. Banks do
this sort of thing, and few domains can have as much impact on people’s lives
as the financial sector.

We could even automate some of the monitoring. We could have observers
that notice a Register command was written but that no RegistrationEmailSent was
written within an acceptable window of time. Monitoring like that is far easier
to set up than replicating the whole system. It’s cheaper too. And it could
make a record of what it has verified, providing even more useful data.

5. https://www.youtube.com/watch?v=uSo8i1N18oc

Chapter 14. Testing in a Microservices Architecture • 238

report erratum • discuss

https://www.youtube.com/watch?v=uSo8i1N18oc
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

What You’ve Done So Far
In this chapter you wrote some tests for the pieces of Video Tutorials that
we’ve done as part of this book. You’ve learned that this architecture makes
testing simpler because it doesn’t introduce disparity between how things
run in test and how they run in production. You also learned that not all
testing has to be automated and that with proper tools, you can bring human
eyes to your testing efforts.

You also got exposed to the idea that monitoring in production can be a more
cost-effective way of verifying system integrity, and we mentioned how we
could have something observing registrations and timing out if it does not
see the process complete in a reasonable amount of time. Can you work
through how you might write that, and maybe even give it a shot? This com-
ponent would probably observe UserRegistered events because until those are
written, no email is supposed to go out. It would likely record those events
into a table that it would check on periodic heartbeat and then make some
kind of noise if too much time has passed between users registering and their
emails going out.

(slow exhalation) This is it. We’ve come to the end of our time on this project.
Thank you for sharing this journey. The next chapter is the last one, and in
it we’re going to list a bunch of topics we weren’t able to cover in this book
and where you can go to keep learning.

report erratum • discuss

What You’ve Done So Far • 239

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

CHAPTER 15

Once you start down the [path of services-based architecture],
forever will it dominate your destiny. Consume you it will.

 ➤ Software Architect Yoda

Continuing the Journey
Well, here we are, the final chapter. You started this journey tasked with
building the web’s new e-learning sensation, and you dove in, applying your
craft as we knew it. You quickly hit roadblocks and pivoted, starting down
the path of services-based architecture. You defined monoliths on page 25,
discovered event-based modeling on page 30, and built a Message Store
(starting in Chapter 2, Writing Messages, on page 25).

You modeled common use cases using events, use cases like registering and
authenticating users (Chapter 6, Registering Users, on page 83 and Chapter
8, Authenticating Users, on page 119, respectively), and you performed long-
running tasks with this architecture Chapter 10, Performing Background
Jobs with Microservices, on page 157. You scratched the surface of building
async-aware UIs in Chapter 11, Building Async-Aware User Interfaces, on
page 173 and began learning how to reason through the challenges this
architecture presents.

After all that, you considered deployment options and actually shipping code
to production in Chapter 12, Deploying Components, on page 195 right before
you hunted down and dealt with a major bug in Chapter 13, Debugging
Components, on page 207. And you wrapped it up with learning about testing
in an autonomous, microservices-based system in Chapter 14, Testing in a
Microservices Architecture, on page 231.

That’s a lot of words to simply say you’ve done a lot. You’ve worked through
the fundamentals of what microservices actually are and how they work, and
that’s something to be proud of. Video Tutorials is a success because of your
efforts.

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Our time here is rapidly drawing to a close, and we weren’t able to cover
everything relating to service-based architecture. This chapter will highlight
some of the bigger issues we weren’t able to cover and give you resources to
help you continue your learning.

Handling Concurrency
A frequently asked question is “How do you scale microservices?” We have
these single-threaded, stateful Components—what happens if they don’t keep
up? Are there other reasons to run concurrent instances? We have completely
ignored dealing with concurrency in this project.

You’re right to think it isn’t as simple as just running more instances. That
works very well for applications because they are inherently stateless.
Autonomous components, on the other hand, are very much stateful.

And it isn’t just intentional scaling that would lead us to multiple instances.
We might accidentally cause two instances to be running at the same time
through our own error with our deployment system. Or perhaps we want to
have two going for redundancy’s sake. In either of these two cases, we have
two instances trying to do the same work. Let’s tackle this case first.

What happens when we have two instances of the identity component running
trying to do the same work? Here’s the Register handler again:

video-tutorials/src/components/identity/index.js
function createIdentityCommandHandlers ({ messageStore }) {

return {
Register: command => {

const context = {
messageStore: messageStore,
command,
identityId: command.data.userId

}

return Bluebird.resolve(context)
.then(loadIdentity)
.then(ensureNotRegistered)
.then(writeRegisteredEvent)
.catch(AlreadyRegsiteredError, () => {})

}
}

}

Both instances of the component will start at the beginning, loading an identity
that has not yet been registered as shown in the first figure on page 243.

Chapter 15. Continuing the Journey • 242

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

instance 1 instance 2loadIdentity

ensureNotRegistered

writeRegisteredEvent

Then they’ll both make their idempotence check:

instance 1 instance 2

loadIdentity

ensureNotRegistered

writeRegisteredEvent

Since nothing has written a Registered event, they both pass the idempotence
check and proceed to writing a Registered event:

instance 1 instance 2

loadIdentity

ensureNotRegistered

writeRegisteredEvent

And we get two Registered events in the stream, which isn’t correct. Imagine if
instead of user registration that was a $1 million wire transfer. Bad news for
our employment prospects.

This isn’t an idempotence issue. This handler is 100 percent idempotent in
that a single subscriber handling this message a second time will not register
a user a second time. This is a concurrency issue, and we do need to design
our systems to handle concurrency.

report erratum • discuss

Handling Concurrency • 243

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Let’s dive into that writeRegisteredEvent function. Here again is its code:

video-tutorials/src/components/identity/write-registered-event.js
function writeRegisteredEvent (context, err) {

const command = context.command

const registeredEvent = {
// ...

}
const identityStreamName = `identity-${command.data.userId}`

return context.messageStore
.write(identityStreamName, registeredEvent)
.then(() => context)

}

There isn’t a way to prevent both of the concurrent instances from reaching
the call to messageStore.write function. Is there a way for this double write call to
not actually write two events? What tools do we have to work with?

Well, registration should be the first event in an identity’s stream. The first
event in our streams is always at position 0. Is there a way we can tell the
Message Store that we’re expecting an event we write to be the first event in
a stream?

There sure is. It’s that third optional parameter, expectedVersion, that we handled
back under Adding Optimistic Concurrency Control to Our Writes, on page
47, when we were writing the write function. If you change that call to write to
.write(identityStream, userRegisteredEvent, -1), you’re telling the Message Store that
you expect there to be no messages in the stream when writing the UserRegistered
event. The first instance to pass through here would successfully write the
event, but the second one would fail, getting a VersionConflictError. The second
instance could then crash, and because we have good system monitoring in
place, it would get started again. When it does, the first instance’s event will
be sitting in the stream, so when the second handles the Register command a
second time, it’ll load and project an identity that has been registered, and
the idempotence check will kick in.

The expectedVersion parameter is your friend. Though we haven’t used it in our
writes throughout the project because we were explicitly disallowing concur-
rency, it’s a good idea to use it on all your writes. Your projections would
need the store the position from the events they handle, and then you would
use that value as the expectedVersion when you go to write.

Now, in the case of scaling, we want the multiple instances to be working on
different work items. In this case, we need to make sure that different
instances won’t try to handle the same messages.

Chapter 15. Continuing the Journey • 244

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/write-registered-event.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

The basic idea is to divvy up the streams between each instance. If, say, we
had three instances of the same component running, we would assign each
instance a number from 0 to 2 inclusive. Then we’d make a numeric hash of
the stream name and take the modulo of that number by 3, yielding a number
0 through 2 inclusive. If that result matches the instance’s number, then that
instance would handle the message. Here is a short potential snippet for doing
just that:

const crypto = require('crypto')

const consumerIdentifier = 1
const numberOfConsumers = 3

const hash = crypto.createHash('sha256')

hash.update('streamCategory-20c27c90-ca76-4dc9-b3b8-afea34137103')

const number = hash.digest().readUInt32BE()
const owningConsumerIdentifer = number % numberOfConsumers
const owningConsumer = owningConsumerIdentifier === consumerIdentifier

if (owningConsumer) {
console.log('I will process the message')

} else {
console.log('I will not process the message (not event for $20)')

}

Our Message Store code can’t currently support this, so if you were going to
keep using this book’s code—not recommended in real-life systems—you’d
probably end up putting this filtering code in the message handlers of the
component you’re scaling. A more robust implementation would provide this
as part of its toolkit.

There certainly is more to concurrency than what we’ve covered here, but
this gives you a starting point for your research.

Snapshotting
If you’ve read about event sourcing, you’ve likely read about snapshotting.
You might also have heartburn from reading that our projections work by
reloading all the events in a stream every time we need to project them.
Snapshotting is a performance enhancement that makes it so that we don’t
need to keep projecting entire streams when we need an entity.

Since streams are append-only logs of immutable events, their underlying
data can’t change. When you implemented projections back in Chapter 7,
Implementing Your First Component, on page 105, you loaded a stream’s events
and ran them through a call to Array.prototype.reduce, passing in the result of
calling a projection’s $init property as the starting point. Let’s consider this in

report erratum • discuss

Snapshotting • 245

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

the context of our video publishing projection. Suppose we have a video that
has been published and named twice times. When we project it, we end up
with a video named “Rework”:

VideoPublished
VideoNamed
name: "Work"

VideoNamed
name: "Rework"

{
 isPublished: false,
 name: 'Untitled'
}

Video
Projection {

 isPublished: true,
 name: 'Rework'
}

Now suppose that a third VideoNamed event makes it into this video’s stream.
If we reprojected the whole stream, starting from the $init value, we’d end up
a video named “Snapshot!” We expect that:

VideoPublished
VideoNamed
name: "Work"

VideoNamed
name: "Rework"

{
 isPublished: false,
 name: 'Untitled'
}

Video
Projection {

 isPublished: true,
 name: 'Snapshot!'
}

VideoNamed
name: "Snapshot!"

However, suppose we had saved the result from projecting this stream when
there were only three events. When we went to project the stream, what if
rather than reprocessing every event starting with $init, we instead started
with that saved projection and only reduced the fourth event into it?

VideoPublished
VideoNamed
name: "Work"

VideoNamed
name: "Rework"

{
 isPublished: false,
 name: 'Untitled'
}

Video
Projection {

 isPublished: true,
 name: 'Rework'
}

VideoNamed
name: "Snapshot!"

Video
Projection {

 isPublished: true,
 name: 'Snapshot!'
}

Well, we’d end up with the same result while having processed fewer events.
This only works because we have immutable data. If events could change,
then we’d always have to project everything every time.

Now, two important points. Computers are fast, and snapshots won’t make
a huge difference until you start having a lot of events in the same stream.
So, this isn’t as critical of a feature as you may think.

Chapter 15. Continuing the Journey • 246

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Second, we don’t snapshot streams! We snapshot entities, and we get entities
by projecting streams. We snapshot the result of projecting a stream through
a projection. Snapshots are meaningless without projections, so a single
stream could have multiple snapshots associated with it because a stream
can be projected in different ways.

Snapshotting is again something our Message Store code doesn’t handle. If
you were to implement it, code that is fetching entities from the Message Store
shouldn’t know about the particulars of snapshotting. That ought to be hidden
behind the fetch function.

Changing the Message Contract
First of all, don’t. Message contracts are supposed to be immutable, and
things that are immutable require more thought, consideration, and design
than things that aren’t. Do not just sit down and start writing code. To do so
is to elect the way of pain with this architecture, and if you do that, well, don’t
blame the architecture.

That said, it may so happen that you need to evolve an existing contract. In
that case, your humble author will proudly punt to Greg Young, who has a
book on the subject.1

But seriously, spending more than 15 minutes designing something doesn’t
mean you’ve abandoned Agile for Big Up-Front Design. It’s not only okay to
think things through sufficiently before you start coding, but that’s our job
as software developers.

Using Different Programming Languages
While you may not want to use multiple programming languages because of
increased operational costs and training overhead, if something can speak
PostgreSQL, it will work in this system. You’d have to reimplement the Message
Store code in each language, of course, or if you use Ruby, you can directly
use the Eventide Project’s libraries.2

Making Use of Monoliths
I have certainly been a critic of monolithic architectures in this book, but that
doesn’t mean that they are without value. That kind of architecture is a

1. https://leanpub.com/esversioning
2. https://eventide-project.org

report erratum • discuss

Changing the Message Contract • 247

https://leanpub.com/esversioning
https://eventide-project.org
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

special-purpose tool. I can’t imagine a faster tool for prototyping than an MVC
ORM web framework.

But if you follow American football, you may be aware of a play called the
fake punt. A team lines up as if it were going to punt the ball to the other
team, but instead attempts an actual play to score a touchdown or some such
(go sports!). Whenever I play video game football, I attempt this on every play,
and you can imagine how good the results are. Or poker. I don’t always play
poker, but when I do, I bluff on every hand. A special-purpose tool is one that
gets used in rare circumstances, dare we say special circumstances.

Now, if you find yourself in one of these special circumstances, then your
knowledge of service-based architecture will help you write a monolith that
is more easily transitioned to long-term foundation. In Chapter 2, Writing
Messages, on page 25, we demonstrated how the essence of a monolith is
having things like “the users table,” a table that aggregates data from diverse
concerns and pretends it’s all a single concept. There’s no reason you can’t
break apart that users table into its constituent pieces, joining them together
when you need to display a user’s page.

If you did break it up, you’re arguably not building a monolith anymore, but
your MVC tools could make building an application like this go quickly. And
then, when you’ve figured out what you need to build, your application already
has its concerns separated giving you a much easier time converting to a
pub/sub architecture with autonomous components.

But remember—special-purpose.

What You’ve Done So Far
Sadly, books are finite, as is your time. In this chapter, you went over a
number of topics that are important to a service-based architecture but that
we couldn’t cover in detail in this one volume. You now have some jumping-
off points to continue your learning.

Why not close our journey together by picking one of the topics we briefly
covered in this chapter and seeing if you can implement it?

Whether you do or don’t, though, you have my sincerest gratitude for sharing
this journey. Let’s connect online and continue the discussion! Architecture
like this is a blast, and I can’t wait to see what you create.

Until then, happy coding.

Chapter 15. Continuing the Journey • 248

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

APPENDIX 1

ES6 Syntax
For better or for worse, we used JavaScript to build Video Tutorials. It’s a fine
language, but like all human creations, it isn’t without its warts. Since its
first release in 1995, it has undergone some changes, some of which we use
in this book.

Two years after JavaScript’s release, Ecma International made a formal
specification for the language. This formal specification is named ECMAScript,
and JavaScript is still the best-known implementation of ECMAScript.1 This
specification is in its sixth version, commonly referred to as ES6. This appendix
is not meant as a full-on primer for the changes introduced with ES6. Rather,
it explains some of the syntax we use that may be unfamiliar if you haven’t
been writing JavaScript day in and day out. Readability is of course extremely
subjective, but it is your humble author’s sincere opinion that use of these
syntactic conventions removes a lot of the noise that you’d otherwise be
subjected to when writing JavaScript.

const and let
JavaScript variables used to always be declared with var. You may have noticed
we never once used var.

ES6 brought us const and let. const is somewhat misnamed. It doesn’t mean
that the thing it points to can’t be modified. For example, the following is
perfectly valid:

const obj = {}

obj.key = 42

1. https://en.wikipedia.org/wiki/ECMAScript

report erratum • discuss

https://en.wikipedia.org/wiki/ECMAScript
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

However, once a name has been assigned in a scope with const, that name
can’t be reassigned to anything else in the same scope. It’s the name that is
constant and not the thing the name refers to. So you can’t do the following:

const obj = {}
const obj = 'SyntaxError: Identifier 'obj' has already been declared'

let, however, lets the name be assigned to something else.

Both const and let brought something else, namely block-level scoping. var is
scoped to its function, regardless of where in the function it is defined. If
you have:

function iterate () {
for (var i=0; i < 42; ++i) {

console.log(i)
}

console.log(i) // `i` is still in scope, and its value is 42
}

We only need i as an iteration variable, but it remains in scope even after the
for loop concludes. If we had instead used let to define i, the console.log call at
the end would give an error, since i is no longer in scope.

For the most part, we always use const unless we have some reason to reuse
the name.

Arrow Functions
Arrow functions give us a shorthand for defining functions that we use
mostly when defining inline functions. Here is an example of one from the
book, taken from the identity component’s handlers:

video-tutorials/src/components/identity/index.js
return {

Register: command => {
const context = {
messageStore: messageStore,
command,
identityId: command.data.userId

}

return Bluebird.resolve(context)
.then(loadIdentity)
.then(ensureNotRegistered)
.then(writeRegisteredEvent)
.catch(AlreadyRegsiteredError, () => {})

}
}

Appendix 1. ES6 Syntax • 250

report erratum • discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/index.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

We’re defining an object literal with key Register whose value is a function. This
function takes one parameter, namely command. Previously we would have had
to write this function as follows:

return {
Register: function (command) {

// body omitted
}

}

We still do define some functions that way (for example, our top-level,
dependency-receiving functions are defined this way), but for inline functions,
the arrow syntax has less noise.

Arrow functions are not quite semantically equivalent to the longer version.
They differ in what the this keyword means in their body. We have not once
used the this keyword in this entire project to avoid the confusion it introduces,
but in short, inside an arrow function, this refers to whatever it referred to at
the time the arrow function was defined. In a traditional function definition
what this refers to is determined by how that function was invoked.

Object Destructuring
Speaking of top-level, dependency-receiving functions, their syntax might be
new to you. Continuing with the identity component, consider its top-level
function:

function build ({ messageStore }) {
// body omitted

}

The parameter list on this function has curly braces, and those smell like
object literals. But you’re probably used to having to write object literals with
key–value pairs separated by colons, such as: { key: 'value' }.

ES6 introduced shorthand for extracting values out of objects and binding
them to names in local scope. For example, let’s examine the identity compo-
nent’s loadIdentity function:

video-tutorials/src/components/identity/load-identity.js
function loadIdentity (context) {

const { identityId, messageStore } = context
const identityStreamName = `identity-${identityId}`

return messageStore
.fetch(identityStreamName, identityProjection)
.then(identity => {
context.identity = identity

report erratum • discuss

Object Destructuring • 251

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/components/identity/load-identity.js
http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

return context
})

}

We receive the context object, which has two keys we’re interested in. The first
line of the function is aware that this object is supposed to have a command
key and a messageStore key. We use the values of those keys in the rest of the
function, and so we need a way to refer to them.

const { command, messageStore } = context introduces the two key names into the
local scope and sets their values to the corresponding values in the object.
We could have written that function as follows:

function loadIdentity(context) {
const command = context.command
const messageStore = context.messageStore
// ...rest of body

}

It can get multilevel too. We could have gone bonkers and done something like:

function loadIdentity(context) {
const { command: { data: { userId } }, messageStore: { fetch } } = command
// ...rest of body

}

That would have introduced userId and fetch into the scope with the values
found at context.command.data.userId and context.messageStore.fetch, respectively. The
intermediate keys don’t become names in the local scope. However, one can
imagine this getting out of hand. We’ve kept our destructuring to a single
level.

Getting back to function definitions, you can also destructure parameter lists.
Getting back to the identity component’s top-level function, we wrote:

function build ({ messageStore }) {
// body omitted

}

That is equivalent to:

function build (dependencies) {
const { messageStore } = dependencies
// body omitted

}

Appendix 1. ES6 Syntax • 252

report erratum • discuss

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

or the old-school version:

function build (dependencies) {
const messageStore = dependencies.messageStore
// body omitted

}

Object Literal Property Value Shorthand
Sometimes you put into an object a value contained in a variable. Suppose
that you want to put a userId into a message’s metadata and you want to put it
at the key userId. In days of yore, you would have to write { metadata: { userId:
userId } }. That double userId is a wee bit redundant. It’s also repetitive.

The committee that maintains the JavaScript language spec thought so too,
and so now, if you have a variable whose name is the same as the key you
want in an object, you can use the shorthand of just putting they key name
directly in the curly braces like so: { metadata: { userId } }.

And it doesn’t have to be all shorthand or no shorthand. The following is also
valid:

const userId = uuid()
const event = {

metadata: {
userId,
traceId: uuid()

}
}

report erratum • discuss

Object Literal Property Value Shorthand • 253

http://pragprog.com/titles/egmicro/errata/add
http://forums.pragprog.com/forums/egmicro

Index

SYMBOLS
$ (dollar sign), passing vari-

ables, 46

A
accidental complexity, 158

AccountClosed, 86

AccountLocked, 117

actions
Creators Portal, 175
defined, 18
record views application,

building, 18–20

actualVersion, 48

Admin Portal, 208–229
Aggregators for, 209–

218, 224–228
using, 219–229
View Data, 214–218
viewing messages by

stream, 224–228

admin_users table, 217

Aggregators
about, 51
adding subscription

functions, 77
Admin Portal for debug-

ging, 209–218
array, 60
authentication, 120–122
configuring, 60, 121
connecting, 58–60
debugging, 224–228
defined, 23
duplication and, 62
handlers, 54–57
idempotence, 57

in microservices architec-
ture, 23, 28

naming videos, 175, 181,
186–189

pending operations, 181
vs. projections, 116
publishing videos, 163
registered events, 120–

122
role, 52
starting, 59–60
testing, 233–236
viewing messages by

stream, 224–228
writing, 53–60

$all
about, 75
aggregating streams,

225, 228
reading messages, 76

all function (Promises), 217

AlreadyPublishedError, 168–169

AlreadyRegisteredError, 113

AlreadySentError, 141, 143

AlreadySentRegistrationError, 147

Amazon S3, 159–160, 162,
171

$any, 71, 226, 228

appName, 8
APP_NAME, 198

applications, see also Cre-
ators Portal; home page ap-
plication; user registration

authentication, 122–131
creating, 4–11
defined, 4, 23
Heroku apps, 195–204

in microservices architec-
ture, 23

mounting, 11, 17, 19
mounting middleware, 5–

7
record views application,

building, 17–21
starting, 9
structure, 11
testing message-writing,

236

architecture, see also mono-
liths

complexity of microser-
vices, 173, 178, 190

CRUD, 21, 25–29
distributed systems, 202
state in, 22–24

arrow functions, 250–253

assign, 55

async
about, 72
-aware user interfaces,

173–191

attachLocals, 6
authentication, 119–132

Admin Portal for debug-
ging, 209–210, 213,
219

aggregating events, 120–
122

configuring and mount-
ing, 121, 130

events and commands,
122

libraries, 123
logging, 123, 128
login, 122, 124–130,

210, 213

logout, 124
with middleware, 5
third-party, 131

AuthenticationError, 129

authoritative source of truth,
62

autonomy
of Components, 29, 232–

236
deploying databases and,

204
distributed systems and,

204–205
testing and, 232–236
View Data and, 61

await, 72

AWS SES, transports, 137

B
back-end folder, 202

background jobs, 157–171
about, 157
defined, 158
everything as, 163
sending emails as, 159
transcoding videos, 158–

171

bcrypt, 97, 128

Bellware, Scott, 49

block-level scope, 250

blue-tape, 233

Bluebird, see also Promises
about, 16
each and, 70

bodyParser, 98, 125

boundaries, 35

business team
idempotence decisions,

136, 170
involving in design, 35,

85–86, 102
naming types and, 32

byEmail, 95, 127

C
canonical data model, 28

catch
authentication, 129
email Component, 138–

139, 143, 151
home page application,

14
naming videos, 179
publishing videos, 169

user registration, 92
version conflict errors, 48

categories, see also category
streams

filtering with, 152, 218
single owners for, 35

category function, 152, 218

category streams
connecting Aggregators

to Message Store, 58
defined, 75
names, 34
reading last message, 75
reading messages, 75, 77
subscriptions, 67

choreography, 154

client, querying applications,
14

CloseAccount, 86

code, typing to learn, xviii

code for this book
authentication, 123
debugging, 207, 213,

216–217
deploying with Heroku,

199, 202
distributed systems, 202
Docker and, 37
login form template, 124
publishing videos, 162–

163, 170
session cookie secret,

125, 199
subscriptions, 66
test data for debugging,

207
user registration, 87, 90
View Data for Creators

Portal, 163
writing first message, 37

command parameter, arrow
functions, 251

Command-Query Responsibil-
ity Segregation (CQRS), 52

CommandAlreadyProcessedError,
182

commands, see also mes-
sages

command streams, 34
defined, 30
design process and, 85–

86
projections and, 107
structure, 32, 42

complexity
accidental, 158
of microservices, 173,

178, 190

Components
adding reference to own

stream, 142
array, 60, 115
as asynchronous, 175,

178
autonomy of, 29, 232–

236
boundaries, 35
concurrency, 242–245
constructors, 115
defined, 23, 30
deploying, 195–204
enforcement, 102
idempotence, 153, 243
in microservices architec-

ture, 23
orchestrating vs. chore-

ographing, 154
owning more than one

entity, 35
resources on, 154
starting, 111, 223
as term, 23
testing, 232–236
third-party systems and,

153
user registration, writing,

87, 105, 110–117
validating names, 178
validation Component,

105, 110–117
validation, adding to,

181–186
video publishing, 163–

171

components array, 60, 115

concurrency
handling, 242–245
optimistic concurrency

control, 41–42, 45–49,
244

scaling and, 242, 244

configureCreateSubscription, 66

configuring
Admin Portal for debug-

ging, 214, 218
Aggregator for registered

events, 121
Aggregators, 60, 121
applications, 5, 7–11
authentication applica-

tion, 121, 130
config file, about, 5

Index • 256

dependency injection, 7–
11, 236

email Component, 144
Heroku apps, 195–199
home page application,

connecting, 15
naming videos Aggrega-

tor, 188
record views application,

connecting, 19
recording video views, 38
subscriptions, 66, 77
testing components, 233
transports, 144
user registration applica-

tion, 99, 115

connect, 45

connectionString, 16

const, 5, 249

constraints, 94, 184

constructors, Component,
115

containers, starting, 78

context
adding validation to

Components, 182
authentication, 126, 129
email Component, 140
mounting middleware, 7
naming videos, 177, 182
password hashing, 97
publishing videos, 165
user registration, 93, 96–

97, 111

contracts
changes to, 84, 247
discovering domain mes-

sages, 84

cookie-session, 125

cookieSecret, 125

COOKIE_SECRET, 198

cookies
authentication, 122, 126
logging out, 124
secrets, 125, 199
viewing in browser, 131

coupling, in MVC model, 25,
133

CQRS (Command-Query Re-
sponsibility Segregation),
52

Create-Read-Update-Delete,
see CRUD

createAction, 18

createAdminApplication, 214

createConfig, 8
createDatabase, 44

createExpressApp, 5, 8

createHandlers, 12

createHome, 12

createIdentity, 242

createIdentityCommandHandlers,
111

createIdentityComponent, 115

createIdentityEventHandlers, 146

createKnexClient, 16

createMessageStore, 44

createPickupTransport, 144

createQueries, 12, 14, 95

createRead, 74, 107

createRegisterUsers, 98

createSend, 136–139

createSendEmailComponent, 144

createSubscription, 58, 77

createTable, 15, 53, 209

createUserCredential, 121

createUserCredentialsAggregator,
122

createVideoOperationsAggregator,
188

createWrite, 44

Creators Portal
describing videos, 176,

191
metadata messages, 174–

176
naming videos, 175–191
uploading videos, 159–

171

CredentialMismatchError, 128–129

CRUD
architecture, 21, 25–29
design and, 40, 85
in MVC model, xvi
traceID and, 7
verbs, 86

CSS static files, 6

currentPosition, 68, 70

D
dashboard, Creators Portal,

175

data
adding to Message Store,

41–50
CQRS (Command-Query

Responsibility Segrega-
tion), 52

duplication, 62
test data for debugging,

207

data field
in message structure,

32, 45
user registration, 115

data models
canonical, 28
monoliths as, 26

databaseUrl, 16

DATABASE_URL, 10, 198

databases
Admin Portal for debug-

ging, 217
in application structure,

12, 14
creating, 44
creating tables, 15, 43,

53
deploying, 197, 204
indexes, 43, 222
instantiating, 16
instantiating Aggregators,

60
migrations with knex, 14,

17, 53
moving Message Store to

own, 204
moving tables between,

204
reading, 53
resetting in testing, 233,

235–236
setup, 10
snake case, 75
understanding relational,

42, 53, 75

debugging, 207–229
Admin Portal, 208–229
Aggregator for Admin

Portal, 209–218
Aggregators, 224–228
distributed tracing, 220–

223
email Component errors,

139
logging, 223
with reason info, 161, 170
test data for, 207
View Data for Admin Por-

tal, 214–218
viewing messages by

stream, 224–228

DelayedJob, 158

dependencies, 10

Index • 257

dependency injection, 7–11,
236

deploying
Components, 195–204
databases, 197, 204
distributed systems,

195, 201–204

describing videos, 15, 160,
176, 191

description, column in databas-
es, 15

deserializeMessage, 74, 77

design
CRUD and, 40, 85
e-commerce and, 89
email idempotence, 136
idempotence decisions,

170
involving business team,

35, 85–86, 102
questions for, 36, 100,

103
testing and, 231
trade-offs, 102

destructuring
object, 251
parameter lists, 252

devDependencies, 10

diminishing returns, 231, 238

distributed monoliths, 29

distributed systems
architecture, 202
autonomy of, 204–205
deploying, 195, 201–204
extracting microservices,

195, 201–204

distributed tracing, 220–223

Docker
code for this book and,

37
distributed systems,

201, 203
Message DB instance, 78
PostgreSQL setup, 10
starting containers, 78
test data for debugging

and, 207

docker-compose.yaml file, 10

docker-compose.yml file, 78

documentation, importance
of, 136

dollar sign ($), passing vari-
ables, 46

domain decomposition, 84,
103

domain messages, discover-
ing, 84

down, 15

duplication, Aggregators and,
62

E
e-commerce, design and, 89

each, 70

ECMAScript, 12, 249–253

Elasticsearch, 23, 222

Elliot, Eric, 95, 233

email
authentication, 126–131
ensuring unique address-

es, 95–96, 99–102
exercises, 154
fetching stream state,

109
idempotence, 135, 147,

153, 167
registration email, 145–

151
sending as background

job, 159
user credentials table, 96
user information for de-

bugging, 210, 212, 216
user registration, 87, 92–

97, 99–102, 113
validating user registra-

tion, 99–102
validation, superficial,

93–95

email Component, 133–155
about, 134
adding to registration

process, 145–151
building, 136–139
exercises, 154
recording registration

emails, 149
running, 144
sending emails, 139–144
sending messages, 135
starting, 138

email field
authentication, 126–131
fetching stream state,

109
user credentials table, 96
user registration, 92, 113

emailDirectory, 145

emailId
email Component mes-

sages, 134–135

email Component, regis-
tration email, 146, 149

generating, 149

emailProjection, 140

EMAIL_DIRECTORY, 145, 198

.eml files, 144

ensureCommandHasNotBeenPro-
cessed, 182

ensureNameIsValid, 182

ensureNotRegistered, 113, 242

ensurePublishingNotAttempted, 167

ensureRegistrationEmailNotSent, 150

ensureThereWasNoExistingIdentity,
96

ensureUser, 211, 213

ensureUserCredentialFound, 127

ensureVideoIsNotPublished, 169

entities
Components owning

multiple, 35
snapshotting, 245–247

entity command streams, 34

entity streams, 33, 75, 88

env file, 5, 8

environment variables
deploying with Heroku,

197–199
email Component, 145
env file for, 5, 8
mounting middleware, 6
PostgreSQL setup, 10
session cookie secret in,

125, 199

errorMatch, 48

errors
authentication, 126, 128–

130
email Component, 136,

138–139, 141, 143,
147, 151, 153, 155

email addresses, ensur-
ing unique, 96

email idempotence, 136,
153

error-handling middle-
ware, 7

fetching and batching
messages, 70

home page application,
14

logging, 7, 71
naming videos, 178–191
optimistic concurrency

control, 47, 244

Index • 258

publishing videos, 161,
168–169

streams, 48
subscriptions, 70, 73
user registration, 92–94,

96, 114
validating video names,

176, 182, 185
validation, 92, 94, 96,

182, 184
version conflicts, 48, 244

ES6 syntax, 12, 249–253

eventGlobalPosition, 212

Eventide Project, see also Mes-
sage DB

about, 23
naming conventions, 33
resources on, 154

events, see also messages;
Promises

aggregating, 52, 54–57,
120–122

authentication, 122
CQRS (Command-Query

Responsibility Segrega-
tion), 52

creating, 38
defined, 30
design process and, 85–

86, 88
event sourcing, 33
fetching stream state,

107–110
format, 32
idempotence, 57
managing current read

position, 69
multiple types, 89
names, 86
recording, 35–39
reducing array of for pro-

jection, 107, 109
snapshotting, 245–247
specifying first event in

Message Store, 244
storing state as, 33
structure, 42
understanding stream

names, 34

EventStore, 50

existingIdentity, 96

expectedVersion, 46–47, 244

expected_version, 45

Express, see also applications
about, 4
dependency injection, 7–

11

F
Failed, 134, 144

failure_reason, 179, 188

fetch, 106–110, 112, 166, 236

ffmpeg, 168

filter, 152

filterOnOriginMatch, 152

filtering, origin streams, 152

forEach, Aggregators, 61

forms
login, 124–130
user registration, 90, 98

frameworks, see Express

from, in email Component
messages, 134, 138

fromPosition, 69, 76

front-end folder, 202

functions, syntax, 250–253

G
GET

authentication, 124
user registration, 98

getAllMessagesSql, 228

getCategoryMessagesSql, 76

getLastMessageSql, 74

getNextBatchOfMessages, 69, 71,
73, 151

getStreamMessagesSql, 76

get_last_stream_message, 74

Git, deploying with Heroku,
196

globalPosition
Aggregator example, 56
checking if command has

been processed, 183
defined, 42
fetching and batching

messages, 71
managing current read

position, 69
in message structure, 42

global_position
converting strings to inte-

gers, 75
fetching and batching

messages, 70
reading last message in a

stream, 75
viewing messages by

stream, 225

Gmail, 137

H
handleAthenticate, 125–131

handleCorrelatedMessagesIndex, 221

handleCredentialNotFound, 129

handleCredentialsMismatch, 129

handleMessage, 71

handleNameVideo, 176

handleRegisterUser, 91–92

handleRegistrationComplete, 90

handleRegistrationForm, 90

handleShowLoginForm, 124

handleShowUser, 216

handleUsersIndex, 215

handlers
Admin Portal for debug-

ging, 210–218
Aggregators, 54–57
Aggregators, connecting

to Message Store, 59
$any, 71
in application structure,

12
authentication, 120, 124–

131
creating, 12
Creators Portal, 175
distributed tracing, 220–

223
email Component, build-

ing, 136–139
email Component, regis-

tration email, 146–151
email Component, send-

ing emails, 139–144
fetching stream state,

107, 109
idempotence, 57, 63, 67,

112–113, 121, 165,
167, 225, 235, 243

message types and, 71
mounting, 12, 18, 98
naming videos, 176–191
projections, 107, 109
publishing videos, 164–

171
record views application,

building, 18–20
role, 13
subscriptions, 67, 71
testing, 235, 237
user registration, 111–

115
validation to Compo-

nents, adding, 181–186

hashPassword, 96

Index • 259

Heroku, deploying with, 195–
204

home page application
adding subscription

functions, 77
building, 11–15
connecting, 15–17
idempotence, 53
mounting, 17
setup, 4–11
template, 13
testing, 233–236
View Data with Aggrega-

tors, 61

homePageData, 13

html, email Component mes-
sages, 134, 138

I
id column

Admin Portal for debug-
ging, 209, 217

incrementing, 15

id field
fetching stream state,

109
in message structure,

31, 45
publishing videos, 160
user credentials table, 96
user registration, 92
viewing messages by

stream, 226

idempotence
Aggregators, 57
authentication, 121
Components, 153, 243
defined, 57
duplication and, 170
email, 135, 147, 153, 167
events, 57
handlers, 57, 63, 67,

112–113, 121, 165,
167, 225, 235, 243

home page application,
53

identity and, 212
importance of, 63
INSERT queries, 121
naming videos, 187, 189
optimistic concurrency

control, 244
publishing videos, 165,

167, 169–170
queries, 212, 227
side effects, 117
subscriptions, 67, 73
testing, 235

user data for debugging,
209

user registration, 105,
113

viewing messages by
stream, 225

identity
Admin Portal for debug-

ging, 209–213
aggregating registered

events for authentica-
tion, 120

arrow functions in, 250
with concurrency, 242–

245
debugging, 220
email Component, 134,

142, 145–151
idempotence and, 212
vs. identity:command, 88
projecting, 145, 147
understanding streams

and, 33
user registration, 83, 86,

88, 112–113, 220

identity:command, 34, 88, 111

identityCommandHandlers, 111

identityCommandSubscription, 111

identityEventSubscription, 149

identityId, 150

identityProjection, 108, 113

identityStream, 112

identityStreamName, 112

imperative/declarative styles,
32

implementation, separating
from principles, xvii

increment, 15

incrementVideosWatched, 54, 59,
213

indexes, 43, 222

infinite loops, 73

$init, projections, 107–109,
113, 167, 184

init function, 235

INSERT, 121, 227

install-message-store-in-heroku.js,
200

integers, converting to jsonb,
56

interleaving, xvi

isRegistered, 107–110, 113

isSent, 140

J
JavaScript

about, xviii
async/await, 72
ES6 syntax, 12, 249–253
with knex, 14
static files, 6

JSON
blob in Aggregator exam-

ple, 53, 55–57
message structure and,

31–32
queries without indexes

and, 222

jsonb_set, 55

justSendIt, 140–141

K
Kafka, 33, 49, 159

keepGoing flag, 68, 72–73

key-value pairs
projections, 107
reading data, 53

Keyes, Ed, 238

knex
building queries with, 14
home page application,

building, 14
home page application,

connecting, 15–17
migrations, 14, 17, 53
naming videos, 180

Kubernetes, 201

L
lastResortErrorHandler, 7
last_identity_event_global_position_id,

212

last_message_global_position, 225

last_message_id, 225

latest(), 17

let, 249

listen, 61

loadEmail, 140

loadExistingIdentity, 95–96

loadHomePage, 13, 61

loadIdentity, 111, 147, 150,
242, 251

loadPosition, 68

loadUserCredential, 127, 129

loadVideo, 165, 182

local scope, 251

Index • 260

locking, accounts, 86, 117,
130, 132, see also opti-
mistic concurrency control

logError, 71

logging
debugging, 223
errors, 7, 71
login info, 123, 128
traceID and, 7

login
authentication, 122–131,

210, 213
count, 213
debugging, 220–223
forms, 124–130
user information for de-

bugging, 210, 213, 216

logout, 124

loops, infinite, 73

M
Mailgun, 137, 154

markRegistrationEmailSent, 213

maxMessages, 76

message brokers, 49

Message DB, see also Mes-
sage Store

about, 23, 41, 43
category function, 218
connecting to, 44
creating tables, 43
deploying with Heroku,

197, 199
in Docker, 78
installing, 199
optimistic concurrency

control, 45–49
writing to, 41–50

message field
email Component mes-

sages, 144
in writing messages, 46

Message Store, see also Mes-
sage DB; messages; sub-
scriptions

Admin Portal for debug-
ging, 217

$any and $all, 228
as authoritative source of

truth, 62
connecting Aggregators

to, 58
connecting to, 44
creating, 43
creating tables, 43
defined, 23

deploying with Heroku,
197, 199

email Component, 137,
140, 145, 151

fetching current stream
state, 110

instantiating Aggregators,
60

vs. message broker, 49
in microservices architec-

ture, 23
moving to own database,

204
naming videos, 182, 186,

188
optimistic concurrency

control, 45–49
publishing videos, 163,

166
putting data in, 41–50
requirements, 41
specifying first event, 244
test data for debugging,

207
writing to, 37–39, 41–50

message_count, 225

message_store schema, 45

MESSAGE_STORE_CONNEC-
TION_STRING, 198, 200

messages, see also com-
mands; email Component;
events; Message DB; Mes-
sage Store; subscriptions

Admin Portal for debug-
ging, 208, 224–228

Aggregators, 54–57
capturing time written to

Message Store, 42
contracts, changing, 247
defined, 30
deserializing, 74, 77
discovering domain, 84
fetching and batching,

65, 69–71, 73, 151,
166

importance of in microser-
vices, 30

message brokers, 49
metadata, 31, 45, 174–

176
naming, 32
order across streams,

209
payload, 32
publishing videos, 163
reading, 75–77
reading last, 66, 68, 74,

77

real-time consumption,
42

recording events, 35–39
storing in streams, 33–34
structure, 31, 42
testing message-writing

applications, 236
tracking last processed,

68
type, 31, 45, 71
viewing by stream, 224–

228
writing, 35–39, 45–47

messages table, 43

messagesPerTick, 67, 70

messagesSinceLastPositionWrite, 68–
69

metadata
defining video metadata

messages, 174–176
email Component, send-

ing emails, 142
filtering with, 152
messages, 31, 45, 174–

176
user registration, 115

metadata field
email Component, send-

ing emails, 142
filtering with, 152
messages, 31, 45
user registration, 115

metrics
login count, 213
recording views, 17–21,

35–39
view_count, 14, 20–24

microservices, see also compo-
nents

architecture, 22–24, 173,
178, 190

complexity of, 173, 178,
190

defined, xvi
extracting, 28, 195, 201–

204
service vs. component

term, 23
state in, 21–24, 33

middleware
about, 98
defined, 5–6
error-handling, 7
mounting, 5–7
session cookies, 125

migrationOptions, 17

Index • 261

migrations
down, 15
with knex, 14, 17
up, 15

migrationsTableName, 203

“Mocking Is a Code Smell”, 95

Model-View-Controller model,
see MVC (Model-View-Con-
troller) model

monitoring, 223, 238

monoliths
avoiding with boundaries,

35
CRUD as, 25–29
as data model, 26
distributed, 29
value of, 247

mount-routes.js file, 5

mountMiddleware, 6
mountRoutes, 17

mounting
Admin Portal for debug-

ging, 219
applications, 11, 17, 19
authentication applica-

tion, 130
handlers, 12, 18, 98
middleware, 5–7
routers, 17
routes, 5–7, 12, 17
user registration applica-

tion, 98

Mozilla, 72

MVC (Model-View-Controller)
model

complexity and, 173
coupling in, 25, 133
CRUD in, xvi
disadvantages, 25–29
duplication in, 62
extracting microservices

and, 28
state in, 20
traceID and, 7

N
name

column in databases, 15
in projections for naming

videos, 184

nameVideo, 176–177

namespace string for UUIDs,
149

NameVideo, 178

naming
const and, 250

events, 86
Heroku apps, 196
let and, 250
messages, 32
operations, 191
streams, 33, 38, 42, 68,

75, 112
tables, specifying, 17
validating names, 175
values in Promises, 216
values to names, binding,

251
videos, 15, 160, 175–191

Neo4j, 23

next, 14, 92

no-op queries, 57

node-resque, 158

Node.js
about, xviii, 4
authentication, 123
Promises support, 16

NODE_ENV, 198

nodemailer
about, 133, 137
exercises, 154
transports, 137, 144, 154

nodemailer-pickup-transport, 137,
144

nodemon library, 10

notVersionConflict, 48

NotFoundError, 128–129

O
object shorthand notation,

12, 253

objects, destructuring, 251

ON CONFLICT DO NOTHING, 59,
121, 187, 212, 227

opportunity costs, 231, 238

optimistic concurrency con-
trol, 41–42, 45–49, 244

orchestration, 154, 237

originStreamName, 142, 144,
149–153

OriginCategory, 152

ownerId, publishing videos,
160, 167, 170

ownership
categories, 35
entities, 35
publishing videos, 160,

167, 170

P
PaaS (platform-as-a-service),

196, see also Heroku

package.json file, 8–9

page_data, 55

page_name, 55

pages table, 61, 235

parameter lists, destructur-
ing, 252

Passport, 123

password field
authentication, 126–131
user registration, 92

password_hash field, 96

passwords
authentication, 126–131
comparing, 128
hashing, 87, 96
non-unique emails and,

101
superficial validation, 93–

95
user credentials table, 96
user registration, 87, 92–

97

pending variable, 181

performance
projections and, 114
snapshotting, 114, 245–

247

pg package, 44, 46, 217

platform-as-a-service (PaaS),
196, see also Heroku

poll, 71

polling
about, 78
Components, 111
cycle start, 72
fetching and batching

messages, 71
number of messages per

loop, 67
subscriptions and, 65, 68
user interface for naming

videos, 181, 190

populate, 208

port, 8
PORT environment variable,

199

position
converting strings to inte-

gers, 75
defined, 42

Index • 262

in message structure,
42, 47

reading last message in a
stream, 68, 75

positionUpdateInterval, 67–68

POST
authentication, 125
user registration, 98
user registration, testing,

237

PostgreSQL
about, xvii
connecting to Message

DB, 44
deploying with Heroku,

197, 199, 203
distributed systems, 203
pg package, 44, 46, 217
resources on, 199
setup, 10

primeRequestContext, 6
principles, separating imple-

mentation from, xvii

process managers, 154

processBatch, 70–71, 73

programming languages, us-
ing multiple, 247

project, 107, 109

projections
about, 167
vs. Aggregators, 116
email Component, 140,

145, 147
fetching stream’s current

state, 106–110
identity, 145, 147
naming videos, 183
optimistic concurrency

control, 244
performance and, 114
publishing videos, 165–

167
vs. replaying, 115
snapshotting, 245–247
user registration, 112

Promises
in application structure,

12, 14
naming values, 216
Node support, 16
order, 217
tape and, 233
then and, 129
write_message, invoking, 47

properties
enforcement, 102
object shorthand nota-

tion, 12, 253

psql, 199

pub/sub, see also messages
distributed systems and,

201
messages, 30

publishing, videos, 31, 158–
171, 181–186, 235, 246

publishingAttempted, 167

PublishVideo, 31

Pug
home page application,

13
login form template, 124
naming videos, 180

push, 200

Q
queries

with Aggregators, 53–57,
121

in application structure,
12

authentication, 121, 127
building, 14
Creators Portal, 175, 178
distributed tracing, 221
ensuring unique email

addresses, 95
fetching and batching

messages, 70, 151
idempotence, 212, 227
indexes, 222
interval in subscriptions,

67, 71, 73
invoking write_message

with, 47
Message Store DB setup,

45
naming videos, 178–179,

186–188
no-op, 57
passing variables with,

46
reading messages, 75–77
registered events, 121
testing home page Aggre-

gator, 235
upsert, 187, 227
user info for debugging,

211–218, 221, 224–228

View Data with Aggrega-
tors, 61

viewing messages by
stream, 224–228

queues vs. streams, 158

R
RabbitMQ, 159

read
adding to Message Store

interface, 77
fetching and batching

messages, 70
fetching stream state,

106
subscriptions, 66, 75–77
testing, 236

Read events, 69

read position
Admin Portal for debug-

ging, 208
fetching and batching

messages, 69–71
loading, 68, 73
managing current, 65, 68

readLastMessage, 66, 68, 77

reason
email Component mes-

sages, 135, 144
publishing videos, 161,

170
validating video names,

176

recordViewing, 35–39

recording
events, 35–39
recording video views,

17–21, 35–39

reduce, 107, 109, 167

Register
arrow functions in, 251
with concurrency, 242
debugging, 220
naming, 85
writing, 87, 111–115

registerUser, 91

Registered
aggregating registered

events, 120–122
debugging, 211, 220
email Component, 146
naming, 85
writing, 88, 113–114

registration, see user registra-
tion

Index • 263

RegistrationEmailSent, 145–151,
211–212, 223

RegistrationRejected, 86, 88

relational databases,
see databases

replaying vs. projections, 115

require
Aggregators, 60, 188
functions, 9
Message Store, 43
middleware, 6
naming videos Aggrega-

tor, 188
read functions, 77
transports, 144
user registration Compo-

nent, 115
UUIDs, 148

requireFromEnv, 8
reset, 233, 235

resolve, 17

resources and async/await
functions, 72

resources for this book
Components, 154
Eventide Project, 154
PostgreSQL, 199

routers
in application structure,

12
authentication, 124
Creators Portal, 175
mounting, 17
mounting handlers, 12
record views application,

building, 18
user info for debugging,

215
user registration, 98

routes
format, 215
mounting, 5–7, 12, 17
user info for debugging,

215, 219
user registration, 98

Ruby
background jobs, 158
support, 247

S
S3, 159–160, 162, 171

sagas, 154

scaling, 242, 244

scope
block-level, 250
local, 251

scripts file, 9

search_path, 45

secrets, session cookies, 125,
199

security, see authentication

Send command
debugging, 220
email Component, 135,

146
registration email, 142,

146, 148–149

send function, 138

sendCommand, 140–141

sendEmail, 141, 146

sendMail, 138

sender, 138

SendError, 143

SendGrid, 137, 154

sendmail, 137

Sent
debugging, 220, 223
email Component, 134,

146
registration email, 142,

146, 149

separation, principles from
implementation, xvii

sequence, 184

servers
restarting with nodemon,

10
running, 10
setup, 4–11

services, as term, 23, see al-
so components

SES, transports, 137

session cookies
authentication, 122, 126
logging out, 124
secrets, 125, 199
viewing in browser, 131

SET, 55

setEmail, 212

side effects, 116–117

signalAppStart, 9
SMTP, 135

snake case, 75

snapshotting, 114, 245–247

sourceUri, 160, 167, 170

SQL, see also PostgreSQL
capturing, 46, 76
reading last message in a

stream, 74

start
Aggregators, 59–60
applications, 9
Components, 111, 223
in distributed systems,

203
email Component, 138
subscriptions, 72

starting
Aggregators, 59–60
applications, 9
Components, 111, 223
containers, 78
debugging, 223
in distributed systems,

203
email Component, 138
restarting server with
nodemon, 10

subscriptions, 72

state, see also Aggregators;
Message Store; View Data

fetching stream’s current
state, 106–110

in microservices model,
21–24, 33

monitoring and, 238
in MVC model, 20
projections and, 167
storing as events, 33
third-party systems and,

153

static, 6
static files, 6

stop, 45, 72

stopping
Message Store DB, 45
subscriptions, 72

streamName field
connecting Aggregators

to Message Store, 58
email Component, send-

ing emails, 140
fetching and batching

messages, 70
fetching stream state,

106
in message structure,

42, 45
publishing videos, 169
reading messages, 76
in subscriptions, 67
validating video names,

185
viewing messages by

stream, 226
in writing messages, 46

Index • 264

streamToEntityId, 187, 189

stream_name column, 225

streams, see also category
streams; Message Store;
messages

adding reference to Com-
ponent’s own stream,
142

boundaries, 35
category streams, 34
command streams, 34
connecting Aggregators

to Message Store, 58
defined, 33
dividing for scaling, 245
email Component, send-

ing emails, 140
entity command streams,

34
entity streams, 33, 75, 88
errors, 48
fetching current state,

106–110
filtering, 152
message order across

streams, 209
name construction, 33,

38, 42, 68, 75, 112
optimistic concurrency

control, 41–42, 45–49,
244

vs. queues, 158
snapshotting and, 247
subscriptions, 67
user registration, 88
viewing messages by,

224–228

strings, converting to inte-
gers, 75

subject, in email Component
messages, 134, 138

subscriberId, 59, 67, 211

subscriberStreamName, 68

subscriptions, 65–79
Admin Portal for debug-

ging, 210–218
code for this book, 66
configuring, 77
connecting Aggregators

to Message Store, 58
email Component, 137,

149, 151–153
errors, 70, 73
fetching and batching

messages, 65, 69–71,
73, 151

flow, 65, 71–74, 79

idempotence, 67, 73
managing current read

position, 65, 68
naming videos, 186
overview, 65–68
publishing videos, 164
reading last message in a

stream, 74
reading messages, 75–77
starting, 72
stopping, 72

“Sufficiently Advanced Moni-
toring Is Indistinguishable
from Testing”, 238

sum, 14

superficial validation, 92–95

supertest, 236

System Health, in Admin
Portal, 208

systemSendEmailAddress, 137

systemSenderEmailAddress, 140–
141, 145

SYSTEM_SENDER_EMAIL_ADDRESS,
145, 198

T
tables

creating, 15, 43, 53
migrations with knex, 14,

17
moving to different

databases, 204
optimizing for reading, 53
specifying names of, 17
third normal form, 53
View Data with Aggrega-

tors, 61
viewing messages by

stream, 224

Taleb, Nassim Nicholas, 101

tape, 233

task-based user interface,
176

templates
home page application,

13
login form, 124
naming videos, 180
user interface for debug-

ging, 216–217, 221

test collisions, 236

test-helper.js, 233

testing, 231–239
Components, 232–236
diminishing returns,

231, 238

home page Aggregator,
233–236

idempotence, 235
importance of, 231
libraries, 233
message-writing applica-

tions, 236
vs. monitoring, 238
opportunity cost, 231,

238
structure, 233
test collisions, 236
test data for debugging,

207

text, email Component mes-
sages, 134, 138

::text, 57

then
authentication, 129
fetching stream state,

106
home page application,

14
Promises and, 129

third-party authentication,
131

this, 251

throw, 92, 94

tick, 71, 73, 153

tickIntervalMs, 67, 71, 73

time, in message structure, 42

to, in email Component mes-
sages, 134, 138

traceId
debugging with, 220–223
email Component, send-

ing emails, 142
extracting, 221
generating, 7
handling asynchronous

user interfaces, 178–
191

indexes, 222
in message metadata, 31
naming videos, 178–191
record views application,

building, 19
user registration, 92

tracing, distributed, 220–223

transcodeVideo, 168

transcodedUri, 161, 167

transcoding videos, 15, 158–
171

transcoding_status, 15

transport, 137, 144

Index • 265

transports, 137, 144, 154

Treat, Tyler, 201

truth, authoritative source of,
62

type field, 31–32, 45–46

U
up, 15

UPDATE, 55, 227

updateReadPosition, 68, 71

updateVideoName, 189

upsert queries, 187, 227

upsertStream, 226

URLs, mounting routes, 5

use, 6, 19

user, 217

user interface
building async-aware,

173–191
complexity of, 173, 190
Creators Portal, 159, 163
debugging, 216–217, 221
describing videos, 176,

191
mounting middleware for,

7
naming videos, 175–191
task-based, 176

user registration
about, 83
building, 87–99
component, writing, 105,

110–117
with concurrency, 242–

245
configuring, 99, 115
confirmation, 90, 92
debugging, 220, 223
design, 85–86, 88
email Component,

adding, 145–151
ensuring unique email

addresses, 95–96, 99–
102

examples, 88
fetching stream state,

107–110
forms, 90, 98
idempotence, 105, 113
locking, 86, 117, 130,

132
mounting, 98
recording registration

emails, 149
router, 98

testing, 236
validation, 92–95, 99–102

userCredential, 126

userId
authentication, 126
debugging, 211, 217
email Component, regis-

tration email, 146
email Component, send-

ing emails, 142
fetching stream state,

109
generating in user regis-

tration, 90
in message metadata, 32
publishing videos, 160
user registration, 113

userLoginEvents, 217

userViewingEvents, 218

user_credentials table, 96

UserLoggedIn, 122, 129

UserLoginFailed, 122, 130

users, see authentication;
user registration

usersIndex, 215

UUIDs
email Component integra-

tion, 148
id field in messages, 31
namespace string, 149
stream names, 33
test collisions, 236
versions, 148

uuidv5Namespace, 149

V
validate command, 93, 184

validate.js, 94, 184

validation
adding to Components,

181–186
consistent data and, 99–

102
names, 175
superficial, 92–95
user input, 175
video names, 181–186
writing Component, 105,

110–117

ValidationError, 92, 94, 96, 182,
184

values
extracting, 251
names, binding to, 251
naming in Promises, 216
reading messages, 76

values array, 76

var, 249

variables
declaring, 249
passing with queries, 46

version, 8
versionConflictErrorRegex, 48

VersionConflictError, 48, 244

versions
conflicts and optimistic

concurrency control,
47–49, 244

in dependency injection,
8

UUIDs, 148

Video Tutorials, see also Cre-
ator Portal; user interface;
user registration

about, 3
Admin Portal, 208–229
Aggregators, adding, 53–

63
authentication, 5, 119–

132, 209–210, 213,
219

with concurrency, 45–
49, 242–245

debugging, 207–229
deploying, 195–204
describing videos, 15,

160, 176, 191
as distributed system,

195, 201–204
email Component, 133–

155
home page application,

4–17, 233–239
homepage setup, 3
login form, 124–130
logout, 124
metrics, login count, 213
metrics, recording views,

17–21
metrics, view_count, 14,

20–24
microservices model, 27
naming videos, 15, 160,

175–191
optimistic concurrency

control, 45–49, 244
publishing videos, 31,

158–171, 235, 246
recording video views,

35–39
server setup, 4–11
snapshotting, 245–247
testing, 233–239

Index • 266

transcoding videos, 15,
158–171

user registration, testing,
236

videoId, 167, 170, 177, 187

videoOperationByTraceId, 179

videoPublishing Component,
181–186, 235

videoPublishingComponent, 235

videoPublishingProjection, 166, 183

videoStreamName, 166

video_operations table, 180

VideoNamed, 182, 184, 186

VideoNamedEvent, 185

VideoNameRejected, 175, 184,
186–188

VideoNameRejectedEvent, 186

VideoPublished, 160, 167

VideoPublishingFailed, 161, 167,
236

videos
Aggregator for viewed

videos, 54–57
defining metadata mes-

sages, 174–176
describing, 15, 160, 176,

191
idempotence, 165, 167,

169–170
IDs, 19
loading, 165, 182

names, validating, 181–
186

naming, 15, 160, 175–
191

publishing, 31, 158–171,
181–186, 235, 246

recording views, 35–39
transcoding, 15, 158–171

VideoViewed, 54, 234

View Data
Admin Portal for debug-

ging, 214–218
asynchronous user inter-

faces, 175, 178–191
authentication, 120
autonomy, 61
Creators Portal, 163
defined, 23
as eventually consistent,

100
in microservices architec-

ture, 23
naming videos, 175, 178–

191
querying email addresses

for user registration, 96
resetting in testing, 233,

235–236
updating with Aggrega-

tors, 54, 61
validating user registra-

tion, 99–102

view_count metric, 14, 20–24

W
web dyno, 203

WHERE, 55, 57, 63, 70, 227

Whitaker, Daniel, 93

worker dyno, 203

write, 66, 77

writeFailedEvent, 143

writeFunctionSql, 46

writeLoggedInEvent, 128

writePosition, 69

writeRegisterCommand, 96

writeRegisteredEvent, 114, 242,
244

writeRegistrationEmailSentEvent,
150

writeResult, 187

writeSendCommand, 149

writeSentEvent, 142

writeVideoNameRejectedEvent, 182,
185

writeVideoNamedEvent, 184

writeVideoPublishedEvent, 168

writeVideoPublishingFailedEvent, 169

write_message, 45–47

writers, entity streams, 34

Y
Young, Greg, 50, 158, 247

Z
Zencoder, 168

Index • 267

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

https://pragprog.com

Node.js 8 the Right Way
Node.js is the platform of choice for creating modern
web services. This fast-paced book gets you up to speed
on server-side programming with Node.js 8, as you
develop real programs that are small, fast, low-profile,
and useful. Take JavaScript beyond the browser, ex-
plore dynamic language features, and embrace evented
programming. Harness the power of the event loop and
non-blocking I/O to create highly parallel microservices
and applications. This expanded and updated second
edition showcases the latest ECMAScript features,
current best practices, and modern development
techniques.

Jim R. Wilson
(334 pages) ISBN: 9781680501957. $33.95
https://pragprog.com/book/jwnode2

Small, Sharp Software Tools
The command-line interface is making a comeback.
That’s because developers know that all the best fea-
tures of your operating system are hidden behind a
user interface designed to help average people use the
computer. But you’re not the average user, and the
CLI is the most efficient way to get work done fast.
Turn tedious chores into quick tasks: read and write
files, manage complex directory hierarchies, perform
network diagnostics, download files, work with APIs,
and combine individual programs to create your own
workflows. Put down that mouse, open the CLI, and
take control of your software development environment.

Brian P. Hogan
(326 pages) ISBN: 9781680502961. $38.95
https://pragprog.com/book/bhcldev

https://pragprog.com/book/jwnode2
https://pragprog.com/book/bhcldev

Docker for Rails Developers
Docker does for DevOps what Rails did for web devel-
opment—it gives you a new set of superpowers. Gone
are “works on my machine” woes and lengthy setup
tasks, replaced instead by a simple, consistent, Docker-
based development environment that will have your
team up and running in seconds. Gain hands-on, real-
world experience with a tool that’s rapidly becoming
fundamental to software development. Go from zero
all the way to production as Docker transforms the
massive leap of deploying your app in the cloud into a
baby step.

Rob Isenberg
(238 pages) ISBN: 9781680502732. $35.95
https://pragprog.com/book/ridocker

Modern Vim
Turn Vim into a full-blown development environment
using Vim 8’s new features and this sequel to the
beloved bestseller Practical Vim. Integrate your editor
with tools for building, testing, linting, indexing, and
searching your codebase. Discover the future of Vim
with Neovim: a fork of Vim that includes a built-in
terminal emulator that will transform your workflow.
Whether you choose to switch to Neovim or stick with
Vim 8, you’ll be a better developer.

Drew Neil
(166 pages) ISBN: 9781680502626. $39.95
https://pragprog.com/book/modvim

https://pragprog.com/book/ridocker
https://pragprog.com/book/modvim

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert as you build the next generation of web appli-
cations.

Chris McCord, Bruce Tate and José Valim
(356 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

https://pragprog.com/book/jgotp
https://pragprog.com/book/phoenix14

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/egmicro
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/egmicro
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Telling a Tale of a Different Kind of Keyboard
	What This Book Is
	What This Book Isn’t
	Separating Principles from Implementations
	Using This Book
	Using Node.js
	Strapping In

	Part I—Fundamentals
	1. You Have a New Project
	Kicking Off Video Tutorials
	Building the Bones
	Mounting Middleware
	Injecting Dependencies
	Taking the Server for a Spin and Starting the Database
	Serving the Home Page
	Connecting the Home Page Application
	Mounting the Home Application into Express
	Building the Record Views Application
	Recording State Changes
	Charting a New Course
	What You’ve Done So Far

	2. Writing Messages
	Unmasking the Monolith
	Trying to Compress Water
	Extracting “Microservices”
	Defining Services
	Getting Components to Do Things
	Representing Messages in Code
	Naming Messages
	Storing State as Events
	Storing Messages in Streams
	Defining Component Boundaries
	Recording Video Views
	Writing Your First Message
	(Re)configuring the Record-Viewings Application
	Hanging a Lantern
	What You’ve Done So Far

	3. Putting Data in a Message Store
	Defining Requirements
	Fleshing Out Message Structure
	Surveying Message DB
	Scaffolding the Message Store Code
	Connecting to Message DB
	Writing write
	Adding Optimistic Concurrency Control to Our Writes
	“Can’t Kafka Do All of This?”
	What You’ve Done So Far

	4. Projecting Data into Useful Shapes
	Handling Events
	(Re)Introducing the RDBMS
	Writing Your First Aggregator
	Handling Asynchronous Messages
	Getting Idempotent with It
	Connecting to the Live Message Flow
	Configuring the Aggregator
	Having the Home Page Application Use the New View Data
	Coming to Terms with Data Duplication
	What You’ve Done So Far

	5. Subscribing to the Message Store
	Sketching the Subscription Process
	Managing the Current Read Position
	Fetching and Processing Batches of Messages
	Orchestrating the Subscription
	Reading the Last Message in a Stream
	Reading a Stream’s Messages
	Adding the Read Functions to the Message Store’s Interface
	Starting the Server
	What You’ve Done So Far

	Part II—Fleshing Out the System
	6. Registering Users
	Discovering Domain Messages
	Starting with the Business Process
	Translating the Business Processes into Events and Commands
	Fleshing Out the Identity Messages
	Examples from Other Domains
	Adding Registration to Our System
	Turning Registration Requests into Commands
	Superficially Validating User Input
	Ensuring Uniqueness of Email Addresses
	Finishing the Application
	Validating Eventually Consistent Data
	Coping with Trade-Offs
	What You’ve Done So Far

	7. Implementing Your First Component
	Fetching a Stream’s Current State
	Joining the “I Wrote a Microservice” Club
	Wiring the Identity Component into the System
	Disambiguating “Projections” and “Replaying”
	Taking It Further
	What You’ve Done So Far

	8. Authenticating Users
	Aggregating Registered Events
	Discovering the Authentication Events and Commands
	Letting Users in the Door
	Using Third-Party Authentication
	What You’ve Done So Far

	9. Adding an Email Component
	Discovering the Email Component Messages
	Addressing Idempotence
	Adding the Component
	Sending the Email
	Running the Component
	Adding Email to the Registration Process
	Recording Registration Emails
	Making the Message Store Aware of Origin Streams
	Revisiting Idempotence
	Orchestrating Components vs. Choreographing Components
	What You’ve Done So Far

	10. Performing Background Jobs with Microservices
	Accidental Complexity
	Use Case #1: Sending Emails
	Use Case #2: Transcoding Videos
	Describing the Creators Portal
	Aggregating Is Also for Other Teams
	Building the Video Publishing Component
	Accepting Potential Duplication
	What You’ve Done So Far

	11. Building Async-Aware User Interfaces
	Defining Video Metadata Messages
	Responding to Users When the Response Isn’t Immediately Available
	Adding Validation to a Component
	Aggregating Naming Results
	Applying Naming Events to the Creators Portal View Data
	Justifying Our UI Decision
	What You’ve Done So Far

	Part III—Tools of the Trade
	12. Deploying Components
	Creating the Heroku “App”
	Configuring the “App”
	Installing Message DB
	Deploying the System
	Distributing the System
	Deploying Databases
	What You’ve Done So Far

	13. Debugging Components
	Priming the Database with Example Data
	Introducing the Admin Portal
	Creating Users
	Wiring the Users View into the Admin Portal
	Hooking the Admin Portal into the Rest of the System
	Inspecting the Results So Far
	Thinking Through the Expected Flow
	Correlators Gonna…Correlate?
	Imagining Our Way to Good System Monitoring
	Starting from the Beginning
	Viewing Messages by Stream
	Augmenting the Message Store for $any and $all
	What You’ve Done So Far

	14. Testing in a Microservices Architecture
	Revisiting the Fundamentals
	Writing Tests for Autonomous Components
	Writing Tests for Message-Writing Applications
	Keeping It Simple
	Dropping Testing?
	What You’ve Done So Far

	15. Continuing the Journey
	Handling Concurrency
	Snapshotting
	Changing the Message Contract
	Using Different Programming Languages
	Making Use of Monoliths
	What You’ve Done So Far

	A1. ES6 Syntax
	const and let
	Arrow Functions
	Object Destructuring
	Object Literal Property Value Shorthand

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

